

$$
44444 / B
$$

81
$\stackrel{\rightharpoonup}{4}$

*
$*$
it.

> -
$+$
e
-

ROHAULT's

 SYSTEM
Natural Philofophy,

 ILLUSTRATED WITHD. Samuel Clarke's Notes Taken molly out of
Sir Ifaac Newton's Philofophy. With Additions.
V O L. I.

Done into Englilh by
JOHNCIARKE, D. D. Prebendary of Canterbury, and Chaplain in Ordinary to His Majefly.

$$
L O N D O N:
$$

Printed for JAMESKNAPTON, at the CROWN in St. Paun's-Church-Yard. Moccxxir?.

```
C
```


THE

Tranflator's Preface.

HE feveral Editions which this Treatife has pafs'd through, both in French and Latin, are a fufficient Teftimony how acceptable and ufeful it has been to the World, and a juft Apology for my tranflating it into Englifb. I fhall not therefore trouble the Reader with any particular Account either of the Excellency of the Subject, the Abilities of the Author, or the Method he has proceeded in, but refer them all to be judged of by the Book it felf: Only as to the Notes the Reader is defired to take Notice, that therein is a full Anfwer to fuch Objections made againft the Author as feem not to have any juft Foundation, and a great many Things in Natural Philofophy; which have been fince found out by the Pains and Indufty of later Philofophers, are here felected from the beft Writers; and there are alfo feveral Things added out of the Obfer vations of the ancient Writers of Natural Philofophy and Natural Hiftory, where they feemed further to explain and illuftrate Matters. In all which, to avoid Repctition, Gratitude demands that the Reader fhould know that there are a great many Things owing to the learned and induftrious Dr. Laughton, and to the Reverend Mr. Morgan. The former of which communicated a great many Things difperfed throughout the whole Book, and corrected Abundance of Errours: And fix whole Differtations are owing to the latter, viz. Thofe concerning The Laws of communicating Motion in elaftick Bodies; The Explication of the Forces of the mechanick Powers, which are contained in this firt Part, and thofe concerning the Celerity with which beavy Bodies defcend, the Motion of Projectiles, the Motion of Pendulums, and that concerning the Rainbow, which are contained in the following Parts.

The fourth Part of this Work is but Chort, and not very perfect; wherefore it is thought more advifcable to refer the Readcr to later Writers of Anatomy who have handled that Subject clearly and fully, than to tranfcribe fo many Particulars. I hope the Whole will be agrecable and acceptable.

THE

Author's P REFACE,

HE Treatifes of Natural Philofophy which have hitherto been publifhed, being pretty much alike, both as to the Matter of them, and the Manner of handling them; It is cafy for me to forefee, that amongft thofe who read This, there will be a great many who wiil be at firft furprifed at the great Difference there is between this Treatife and others. To prevent therefore in fome Meafure this Surprize, and to give what Satisfaction I can in this Matter, I think my felf obliged to give an Account of the Obfervations which I have made upon the Philofophy of the Ancients, and of the Method which I have taken in this Work.

In refliceting upon the different Effects of Time, I have long fince obferved, how favourable it is to fome Things, which it is continually advancing to Perfcction, and how pernicious it is to others, fo as to ftrip them of thofe Beautics and Graces

$$
\text { A } 3 \quad \text { which }
$$

The AUTHOR's P REFACE.

which they had at their firf Rife ; and I always concluded that Arts and Sciences cannot be of the Number of thefe latter, but that Time is fo far from being prejudicial to them, that on the other Hand it is very advantagious. For as a great Number of Perfons who cultivate the fame Art or Science for feveral fucceeding Ages, add their own Induftry, and their new Light to the ancient Difcoveries of thofe who went before them, it is impoflible but that fuch an Art or Science muft receive great Improvement, and arrive nearer and nearer to its utmoft Perfection.

And thus I faw that Mathematicks did really increafe by little and little in this Manner; as it is eafy for any one to be convinced of, who confiders only the vaft Progrefs that hath been made by the great Genius's of our Time, who have excelled all others in this Particular, and furmounted fuch Difficulties as the moft Learned in former Ages confeffed they were not able to folve. I faw alfo that moft Arts were perfected by Time; Workmen every Day finding out a Multitude of curious Inventions, which are not fo much efteemed as they deferve, becaufe they are very common, and we do not enough take Notice of them. Though amongft thofe Engines which are employed in making Things of common Ufe, there is one that has been lately invented, which has in it fo much Contrisance, that this fingle Thing deferves to be

The AUTHOR's PREFACE.

more admired than all the Inventions of Antiquity.
But when I came to confider Philofophy, particularly Natural Philofophy, I was very much furprized to fee it fo barren as not to have produced any Fruit, in fo much that twenty Ages have paffed, without any new Difcovery made in it.

However: I could not perfuade my felf, that the Study of Natural Things was neglected, becaufe it was thought to be of no Ufe; for Health has always been efteemed one of the chief Bleflings of Life, and no one can be ignorant, that Phyfick, the fole End of which is to maintain and reftorc Health, is built upon Natural Philofophy.

No r could I ever perfuade my felf, that thofe who improved this Science were lefs ingenious, than commion Artifts: For we find by Experience that in Families where there are a great many Children, when they come to make Choice of their Profeffions, thofe of them which have the quickeft Genius, are appointed for Study, or voluntarily incline themfelvesto it; and thofe only whofe Underftanding is not fo good, apply themfelves to the mechanical Arts, and are contented with their Lot.
Hereupon I fulfected, that pertiaps the Knowicdge of Natural Things was above the Reach of humane Underftanding, fo that it was in vain to labour to attain that which is beyond our Capacity : But when I A 4 confidered

The AUTHOR's PREFACE.

confidered the furprizing Things done by fome Philofophers of our own Age, who within forty or fifty Years have found out Things which were looked upon as moft difficult, and which fome have doubted, whether ever they could be found out at all; I immediately caft off this Sufpicion.

So that I was forced to conclude, that the Manner of philofophizing, was the Thing that had hitherto been miftaken, and that the Errors therein which have been introduced, being fuch as no Body had any Hopes of finding out a Remedy cqual to, were a certain Bar to hinder the Approaches towards Truth. I fet my felf then to enquire wherein the Manner of their treating Philofophy was defcetive ; and after having examined with the greateft Diligence poffible, what the Mcthod has been from the Schools of the Athenians down to this very Time; there feemed to me to be four Things blameable in this Matter.

Firft, The too great Authority that hath always been given to the Ancients in the Schools: For befides that this prodigious Difference which is put between them and the Moderns, is without the leaft Foundation; for Reafon is to be found in every Place and every Age; it is certain that fuch a blind Submiffion to the Opinions of Antiquity, is the Caufe why Perfons of the greateft Genius, receiving fuch Opinions for true without confidering them, when perhaps they may be falfe, have not an Op-

The AUTHO R's P RE FACE.

portunity of knowing the contrary Opinions, nor confequently of finding out all thofe other Truths that depend upon thofe which fo fatal a Prejudice has hindred them from fecing. . And further, this ftrong Perfuation of our being fo much inferiour to the Ancients, caufes in us a Kind of Sluggifhnefs and Diffidence, which hinders us from attempting to enquire into any Thing at all. We imagine that Reafon is limited at the Place where they ftopped, and that all is done that can be done humanely fpeaking, if we go as far as they went. Thus the greateft Genius's contenting themfelves with going over the Reafonings of the Aricients, don't exercife their own Reafon at all; and though they be never fo capable of finding out any Thing themfelves, they contribute no more to the advancing Natural Philofophy, than if they had not meddled with it all.

I fay nothing in particular of that Vencration which hath been paid to Arifotle, though fometimes it has rifen to fuch an Excefs, that to alledge that he faid fuch a Thing, was fufficient to make any One not only to doubt of what his Reafon convinced him, but even to condemn it. I fhall only make this Obfervation; that the Imagination which a great many have had, that he knew all that could be known ; and that all Science was contained in his Books, hath caufed the greateft Part of the beft Philofophers fince to apply themfelves in vain to

The AUTHOR's PREFACE.

read his Works, to find out in them what was not there, and what they might perhaps otherwife have found out by their own Ingenuity. But if there have been fome who, not being quite fo zealous as others, did not hope to reap fo very much Fruit from reading him; yet it always happened that the Defire of recommending themfelves by explaining thofe Places which he left obfcure (on Purpofe, as fome think, or elfe for Want of better Light) hath made them imploy their whole Strength of Mind, and all their leifure Time, to very little Purpofe, in writing Comments upon his Philofophy, without promoting the Science at all: For thofe who have undertook to explain Arifotle; have underfood him fo differently, that there are an infinite Number of Places which all the Schools are divided about; And if there be fome few in which they have agreed, it is becaufe the Notions contained in them were fo common, that very few Perfons were ignorant of them. So that they took more Pains to ftudy Ariftotle than they did to ftudy Nature, which perhaps is not near fo myfterious as he. There are a Multitude of Things which Nature plainly declares to thofe who apply their Mind thereto. But alas, this is not the Cuftom, we had rather hearken to Ariftotle and the Ancients; and this is the Reafon why we make fo little Progrefs.

Another Thing which hinders the Progrefs of Natural Philofophy, is the Treat-

The AUTHO R's P RE FACE.

ing thercof in a Manner too metaphyfical; and the Difputing about Queftions fo abftract and general, that though all Philofophers were agreed in their Notions of them, yet they could not help to explain the leaft particular Effect in Nature; whercas every uffeful Science ought to defcend immediately to Particulars. For Inftance, what good do thofe long and nice Difputes do, about the Divifbility of Matter? For though it could not be accurately determined, whether it be infinitely divifible or no; it would be fufficient to know, that it can be divided into Parts frnall enough to ferve for all Purpofes that can be.

It is very ureful, without doubt, to find out the Nature of Motion in general. And it may not be very improper to examine a little whether it be well or ill defined thus, The Act of a Being in Power, fo far forth as it is in Power. But we fhould not fpend too much Time in determining this, and fuch like Queftions; I fhould rather think, that after having confidered a little the true Nature of Motion in general, we fhould particularly and diftinctly cxamine all the Properties of it, fo that what we affirm concerning it, may be applied to fome Ufe; In a Word, I think we fhould carcfully enquire into the Caufe why Matter produces fuch a particular Effect rather than any other, and not accuftom ourfelves to fay that it is the Effect of a certain Quality; for from hence it is that we are led to give

The AUTHO R's PREFACE.

Words inftead of Reafons, and hence arifes that fenfelefs Vanity of thinking that we know more than othcrs, becaufe we know Words which the common People don't know, and which indeed have no determinate Meaning. To fay the Truth; if fhows a mean Spirit, and onc that is foon fatisfied; to believe that we know more of Nature than other Men, becaufe we have learn'd that there are occult Qualities, and can give a general Anfwer to all Queftions propofed to us concerning the different Effects of Nature. For what Difference is there in the Anfwer of a Plowman and a Philofopher, if they are both asked, whence is it, for Inftance, that the Loadfone attracts the Iron, and the one anfiwers, that he does not know the Reafon of, it, and the other fays, it is done by fome Vertue or occult Quality:? Is not this in plain Englifh, to fay the fame Thing in different Words? and is it not evident, that all the Difference there is betwixt them is only this, that the one is fo honeft as to confers his Ignorance, and the other has the Vanity to endeavour to conceal his?

A third Defect which I have found in the Method of Philofophers, is, that fome of them are wholly for Reafoning, and depend fo much upon the Strength of their Arguments (efpecially if they be borrowed from the Ancients) that they judge it fuperfluous to make any Experiments. Others on the contrary, quite tired with fuch tedious Ar-

The AUTHOR's P REFACE.

guments, the greateft Part of which are not conclufive, or are nothing to the Purpofe, think every Thing ought to be reduced to Experiment, and that there fhould be no Reafoning at all. But both thefe Extremes do equally hinder the Progrefs of Natural. Philofophy. For they who fall into the firft, of thefe Errors, hinder themfelves of the beft Means of finding out new Difcoveries, and of confirming their own Arguments likewife; And they who fall into the fecond, by depriving themfelves of the Liberty of drawing Conclufions, hinder the Knowledge of a large Train of Truths, which may many Times be deduced from one fingle Experiment. Whercfore it cannot but be very advantagious to mix Experiments and Arguments together. For Reafoning perpetually, and upon fuch gencral Things only as arc ordinarily argued about, without defcending to Particulars, is by no Means the Way to attain any very extenfive or very certain Knowledge: Thus we fee the fame Things continually bandyed about, and no new Difcoveries made ; nay, we are not very fure of the old ones, as general as they are. We fee alfo that they who confide moft in thofe Arguments which they believe to be Arifotle's, are in perpetual Difpute, and that they contend for Opinions which are directly contrary to one another, without being able to convince thofe of the other Side by their Argurnents. And this plainly fhows how little Certain-

The AUTHOR's P REFACE.

ty or Evidence there is in their bare Reafoning:

Ex́periments therefore are neceffary to effablifh Natural Philofophy; and this was a Thing which Ariftotle was fo fully convinced of, that the Reafon why he thouight that very young Perfons fhould not apply themfelves to the Study of Natural Philofophy, was, becaufe at that Age they are fo little acquainted with Things, as to be unable to have made many Experiments ; and on the other Hand he was of Opinion, that they were then moft capable of recciving Mathematicks, becaufe this Science confifts of meer Reafoning, of which the Mind of Man is naturally capable, and docs not at all depend upon Experiments.

But on the contrary to reject entirely all Reafoning, in Order to do nothing but make Experiments, is to run into another Extremity much more prejudicial than the former. For this is wholly to difcard Reafon, and yicld all up to Senfe, and to contract our Knowledge into a vcry narrow Compars; for by Experiments we can come to the Knowledge of grofs and fenfible Things only. Wherefore if we would proceed rightly in our Enquiries into natural Things, we muft of Neceffity mix thefe two Means of Knowledge together and join Reafon with Experiments.

AND that we may the better fee the good Effects of thefe two when joined together, and the Ufe that may be made of then,

The AUTHO R's PREFACE.

 to the Advantage of Natural Philofophy, we may obferve that there are three Sorts of Experiments. The firtt is, to fpeak properly, only the mere fimple ufing our Senfes; as when accidentally and without Defign, cafting our Eyes upon the Things around us, we cannot help taking Notice of them, without thinking of applying what we fee to any Ufe. The fecond Sort is, when we deliberately and defignedly make Tryal of any Thing, without knowing or forefeeing what will come to pafs; As when, after the Manner of Chymifts, we make Choice of firt one Subject and then another, and make all the Tryals we can think of upon each of them, and carefully remember what we have at any Time found to fucceed, and the Manner in which we arrived at any certain Effect, in Order to apply the fame Means another Time to produce the fame Effect. We alfo make Experiments in this fecond Way, when we go amongft different Sorts of Workmen in Order to find out the Myfteries of their Arts, as Glafsmakers, Enamellers, Dyers, Goldfiniths, and fuch as work different Sorts of Metals, and to obferve how they prepare their Matters, and how every one of them afterwards work upon thofe which belong to them. Lafly, The third Sort of Experiments are thofe which are made in Confequence of fome Reafoning in order to difcover whether it was juft or not As when after having confidered the ordinary
The AUTHOR's PREFACE:

ordinary Effects of any particular Subject, and formed a true Idea of the Nature of it, that is, of That in it which makes it capable of producing thofe Effects; we come to know by our Reafoning, that if what we believe concerning the Nature of it be true, it muft neceffarily be, that by difpofing it after a certain Manner, a new Effect will be produced, which we did not before think of, and in Order to fee if this Reafoning holds good, we difpofe the Subject in fuch a Manner as we believe it ought to be difpofed in Order to produce fuch an Effect.

Now it is very evident that this third Sort of Experiments is of peculiar Ufe to Philofophers, becaufe it difcovers to them the Truth or Falfity of the Opinions which they have conccived. And as to the two foregoing ones, though they be not altogether fo cxcellent, yet they ought not to be wholly rejected as of no Uie to Natural Philofophers: For befides that their Knowledge is continually enlarged by them, they are alfo the Occafion of making the firtt Conjectures concerning the Nature of thofe Subjects which Natural Philofophers are converfant about; and preferve them from fome falfe Notions they might otherwife perhaps have entertain'd. Thus, for Inflance, we might have concluded in general, that Cold contracts and condenfes every Thing, if we had not difcovered by Chance or other-

The AUTHO R's PREFACE.

otherwife, that there are Things which are dilated by Cold.

The fourth Defect that I obferved in the Method of Philofophers, is the neglecting Mathematicks to that Degree, that the very firft Elements thereof are not fo much as taught in their Schools. And yet, which I very much wonder at, in the Divifion which they make of a Body of Philofophy, they never fail to make Mathematicks one Part of it.

Now this Part of Philofophy is perhaps the moft ufeful of all others, at leaft it is capable of being apply'd more Ways than all the others : For befides that Mathematicks teack us a very great Number of Truths which may be of great Ufe to thofe who know how to apply them: They have this further very confiderable Advantage, that by exercifing the Mind in a Multitude of Demonftrations, they form it by Degrees and accuftom it to difcern Truth from Falfehood infinitely better, than all the Precepts of Logick without Ure can do. And thus they who ftudy Mathematicks find themfelves perpetually convinced by fuch Arguments as it is impoffible to refint, and learn infenfibly to know Truth and to yield to Reafon; infomuch that if inftead of neglecting them, as is ufually done, it were an eftablifhed Cuftom, to make Children apply themfelves to this Science at firt, and to improve them in thefe Studies as much as we do in others ; it would be of vaft Ufe to hinder them from contraating that invincible Obftinacy

The AUTHO R's PREFACE.

in their Opinions which we fee in the greateft Part of thofe who have compleated their Courfe of Philofophy; who probably would not have fallen into fo pernicious a Temper of Mind, if they had been accuftomed to, and familiar with convincing Truths; and not feen thofe who maintain in publick any Doctrine whatever, continually triumph over thofe who endeavour to fupport the contrary ; fo that all Things feem to them only mere Probabilities. They do not look upon ftudying as a Means to difcover new Truths, but only as a Piece of Wit to excrcife themfelves in, the only End of which is fo to confound Truth with Falfehood by Means of fome fubtle Diftinctions, that the one or the other may be equally maintained, without ever being compelled by any Reafons to yield, let the Opinion they defend be never fo extravagant. And indeed this is the Event of all publick Difputes, where very often Opinions directly contrary to each other, are by Turns propofed from the fame Chair, and equally triumphed in, without making Matters at all clear or eftablifhing any Truth thereby.

But the great Advantage that natural Philofophers have from. Mathematicks in particular, is, that they are thereby accuftomed to the viewing of Figures, and enabled to underftand the different Properties of them. I know it is here objected by fome, that we onght not to ftop at Fgures becaufe they are not aftive. But though
they

The AUTHOR's PREFACE.

they are not active in themfelves, yet it is certain notwithftanding that their Differences make Bodies which we put into Action capable of certain Effects, which otherwife they could not have produced. Thus a Knife by having an Edge fet upon it becomes capable of cutting, which before it was not; and Workmens Tools, by their different Figures, are fitted to produce thofe different Works which are made by the Help of them. And if the Figures of Bodies which come under our Senfes are fo neceffary to the Effects which they produce; it is reafonable to think that the moft imperceptible Parts of Matter, feeing they have every one a certain Figure, are alfo capable of producing certain Effects in Proportion to their Bignefs, like thofe which we fee produced by the groffeft Bodies.

But not to enter too far into Particulars concerning the great Ufe of Mathematicks, Is it not enough to put us upon applying ourfelves more to them than we have hitherto done, to confider that 'tis by their Means that the modern Philofophers have difcovered all that is excellent and peculiar in natural Philofophy? And alfo that it is by the Help of Mathematicks, that the moft celcbrated Artifts in every Age have made all thofe noble Difcoveries, the Ufe of which is fo advantagious to us at this very Time, and which make all the Varicty of Arts and all the Conveniences of Life. It may be fome may think on the contrary,

The AUT HOR's PREFACE.

that thefe very Artifts, the greateft Part of whom it is very probable have not much applied themfelves to this Science, will juftifie it, that it is not fo neceffary as I would perfuade them. But here there are two Things to be confidered: Firft, that as there is a natural Logick in all Men, fo is there alfo natural Mathematicks, which according as their Genius's are difpofed, make them more or lefs capable of Invention. Secondly, That if their Genius alone, conducted only by natural Light, will carry them fo far, we cannot but hope greater Things from the fame Genius if the Study of Mathematicks be added to its natural Light, than if that Study be neglected. And indeed all the Propofitions in Mathematicks, arc only fo many Truths, which thofe, who apply themfelves to it, come to the Knowledge of by good Senfe. And they who find themfelves naturally difpofed to it, do very ill to neglect what others have before difcovered: For it is the moft certain Way of finding out any Thing new, to know all that has been before found out by others, and the Manner how it was found out.

However, I don't put them upon the Rank of Inventors who have met with fomething by Chance which they did not fearch after: As was the Cafe of that Workman who by cooling on a fudden in the Watcr a picce of Steel which he had heated red-hot, found it in a Moment very much harder than it was before: It was

The AUTHO R's P REFACE.

without doubt a very lucky Thing to find out this Way of tempering Steel; but the Workman who had the good Fortune to hit upon it, docs not deferve the Name or Title of an Inventor ; as a great many others do who are not beholden to Chance for the Glory of their Inventions: As for Inftance, the Perfon who firf invented a Firc-lock to a Gun ; for it is certain that this latter had the whole Engine in his Head, if I may fo fpeak, before he made the leaft Part of it; whereas the other found out the Way of tempering Stecl, by hitting upon a Thing, as was before faid, by) Chance, which he did not fearch after.

Laflly, That Mathematicks are of very great Ufe in the other Parts of Philofophy, we need no other Teftimony than that of the moft celebrated ancient Philofophers, who not only fpeak honourably of them in their Writings, but do alfo make ufe of them themfelves. Tt is fufficiently known, that Plato caufed it to be written over his School Door, That none but Geometricians foould enter in there. And they who have taken the Pains to read over the Works of Arifotle, have taken Notice of the feveral Applications he has made of Mathematicks in many Places; fo that they who do not underftand the Elements at leaft, have no great Reafon to boaft of their being able to underfand the Writings of this Philofopher.

The AUTHOR's PREFACE:

The more I confider thefe four Defeats in the Method of Philofophers, the more I find it impoffible to come to the Knowledge of philofophical Truths, without correcting them. And this does not appear to me to be very difficult; for though I had made fome Proficiency in. Mathematicks, and accufomed my felf to follow Reafon rather than Authority, yet I did not find my felf fuch a Lover of my own Reafonings, as to neglect Experiments, nor fo bent upon Experiments, as not to fuffer my Reafon to go beyond what they difcovered.

But though this was fufficient to put me upon improving natural Philofophy, and to make me hope that I might be able in fome Meafure to help forward the Progrefs of this Science ; yet I obferved a fifth Defect, not in the Method of thofe who fudy Philofophy, but in that of a great many who read their Works; which made me think, that to publifh any Thing upon natural Philofophy, was fo far from bcing any Advantage, that it was but too much to expore one's felf. For that Averfion which is ufual againft fuch Pcrfons, and that difagreeable Manner in which thofe who are uncapable of finding out any Thing themfelves, receive the Writings of fuich as attempt to exceed what is common, often hazard the Reputation of the Author. For fcarce can a Philofopher prefent the Publick with any Fruits of his Studies, but fome unknown Perfon who has a Mind to fignalize him-

The AUTHO R's P REFACE.

felf, attacks them before he underftands them. And hence come thofe trifling Difcourfes or Differtations, for the moft Part anonymous ones, which never fail immediately to appear, wherein are feldom any Thing elfe but Reproaches and very low Jefts; and not being able to overthrow Truths that are fo firmly eftablifhed; they try to turn them into Ridicule, by fhowing that they are contrary to fome ancient Maxim or popular Error, which tickle the Ears of half-witted People, who are accuftomed to take Things without any Proof: And that which is very remarkable here, is, that thefe Writers for the moft Part attack the Works of others only becaufe they think them contrary to Arijtotle; and yet becaufe they have read nothing of this Philofopher but only thofe Citations which they found in their philofophical Lectures, it very often happens that the Thing which they thus attempt to confute, is what Ariftotle himfelf has faid in expref's Terms. We may fafely affirm, that the Ancients did more Juftice to Men's Labours, and without doubt it was in a good Meafure owing to this, that Philofophy made fome Progrefs in the firt Ages of it; fo far were they from fuffering thofe who had made any new Difcoveries, to be cried down at a Venture and without any Reafon; cvery Body knows that there were publick Rewards appointed for fuch; even to have fometimes Statues crected to them; fo firmly were they perfuaded in b 4 thofe

The AUT HO R's P REFACE.

thofe Times that Honour contributed mof to the Invention of Aits,

It is true indced, that this Maxim feems to be revived and re-eftablifhed in our Age, Yet though Princes have by their Authority approved and favoured Arts and Sciences, the long Stiffnefs which they who ftudiced natural Philofophy have in fo many Ages contracted, have fo accuftomed them to reft fatisfied with what they received from their Predeceffors, that the very propofing any new Thing, is enough to render both the Thing and him that propofes it odious. Now to take away the Foundation or rather the Pretence of this Averfion, fuch Perfons ought to know, that this Reproach of Novelty is gencrally a great Deceit: For if a Thing be true, it cannot be ncw, becaufe nothing is fo ancient as Truth, and it is the Difcovery of the oppofite Errour only that can be faid to be new. For Want of rightly diftinguifhing thefe two Things, we often fee fome Perfons crying out that we overthrow the Order of Nature, when we only overthrow a falfe O pinion which they were prejudiced in. But though fuch Sort of Perfons have not much Reafon on their Side, yct the Credit and Authority which they may have over others, is the Caufe of their Exclamations always making an Impreflion upon the Minds of a great many ; and this muft ever be difagreeable to thofe who have no other Defign,

The AUTHO R's P REFACE.

 fign, bnt to contribute to the Publick Good.What a Vexation muft it be to Dr Harvey, for Inftance, to fee all his Life long, how ill the Difcovery he had made of the Circulation of the Blood, was received; the Motion of which was quite different from what the Ancients thought? Surely we cannot fhow too great an Acknowledgment to a Man who had undeceived the World of an ancient Errour, and by the Truth which he eftablifhed, made us fee as clear as the Day, that almoft all the Theory of the Phyfick of the Ancients was falfe. But how many Enemies has this Doctrine got him inftead of Thanks? I folemnly declare therefore, that upon feeing what Li berty is taken to oppofe the beft Things, becaufe the Misfortune of Mens having always been ignorant of them, made them to be thought new; I laid afide the Thoughts of ever entertaining the Publick with any Thing of my own, or what I learned from the Works of fome modern Writers. But thus much I thought at leaft, that it was not impoffible to advance a little further than is generally done in the Knowledge of Natural Things, if I carefully avoided falling into any of thofe Defects which I obferved in the Method this Study was in at prefent. And indeed having fpent fome Years in reading the Ancients and Moderns, but with a firm Refolution not to follow then any further than I could fee the Rea-

The AUTHOR's PREFACE.

fons of each of them; it appeared to me that my Defign was not entircly fruftrated. But while I was thus inftructing my felf by reading Books, and converfing with learned Men, and thofe that were excellent in any Art, I never laid afide the Ure of my Reafon, but confidered the feveral Subjects, and endeavoured always to ground my Reafons upon mathematical Truths, and fure Experiments. And fo good Succefs had I in carrying on my Defign, that a great many of my Friends, whofe Abilities all the World, I faw, had a great Value for, advifed me to communicate it to others by publick Conferences, or at leaft by private Converfation. I muft fay, that it was very difficult to perfuade my felf to this, becaufe I am diftruftful of my felf, and do not think my felf Oratour good enough to undertake to plead the Caufe of Truth thus publickly. However I fuffered my felf to be over-ruled; and though I was fenfible I wanted a great many Talents, yct I fubmitted to my Friends, who affured me, that if the Things were plainly propofed, and in a mathematical Way, they would be acceptable at leaft to the beft Judges. And indeed their Advice fucceedcd: For thefe Conferences were not only agreeable, but it was wifhed that the Subjects had been put down in Writing. And by confenting to this Opinion of my Friends, I perceived that I had infenfibly wrote a Book; and becaufe there were fo many Copies of it about, that it was be-

The AUTHO R's P REFACE.

come, as it were, publick, and a great many Faults flipp'd in, I refolved to review it more exactly, in Order to perfect it as muchr as I could. They who read it over, will eafily fee, that I have overlooked nothing that is good in the Ancients.
I have taken all the general Notions from Arifotle, cither for the eftablifhing the Principles of natural Things, or the chief Properties of them: And I have rejected a Vacuum and Atoms, or Epicurus's indivifible Particles, which I think are Things contrary to what is firmly eftablifhcd by Ariftotle; and I have learnt of him to confider with the greateft poffible Care the different Bignefles, Figures, and Motions of the infenfible Parts of which fenfible Things are compofed. And this I was the readier to do, becaufe all thefe Things have a neceffary Connexion with, and Relation to the Divifbility of Matter, which I acknowledge with Ariftotle, who hardly refolves any particular Queftion, without confidering the Bignefs, Figure, and Motion of the Parts of Bodies, and the Pores which are between them. But that which moft of all determined me to this Confideration, was, that though there feems to me to be a juft Ground to doubt of the Truth of fome Qualities and Powers commonly afcribed to fome Bodies, yet I do not think that there is the fame Reafon to doubt of their being compofed of infenfible Parts, or

The AUTHOR's PREFACE.

that I can be deceived in affirming that all thefe Parts have their particular Figure and Bignefs.

Besides thofe Affiftances which Ihad from the Ancients, I have alfo collected a great many other Truths, from the moft eminent modern Philofophers, whofe Names you may find in their Places. But the Perfon whom I have moft of all made Ufe of in this Work, and whofe Name I have not mentioned at all, to avoid perpetual Repetition, is the famous Cartes; whofe Merit, by which he becomes more and more known to all the Nations in Europe, as he has long been to many of the principal States, will draw a Confeffion from the whole World, that France is at lcaft as happy in producing and cducating great Men in all Sorts of Profeffions, as ancient Greece was.

I have divided this Work into four Parts. The firft treats of natural Bodies in general, and thcir principal Propertics, fuch as $\mathcal{D} i$ vijbility, Motion and Reft, of Elements, and of fenjble Qualities, and I have particularly infifted upon explaining thote which relate to Seeing. And I flatter my felf that upon this fingle Subject I have collected more Truths into eight or nine Chapters than are contained in feveral large Volumes which treat of Opticks, Dioptricks and Catropticks after the Manner of the Ancients.

The fecond. treats of the Sy/tem of the World, or of Cofmography, which I thought might

The AUT HO R's P R E FACE.

might prove more ufeful than the general Queftions that are ufually propofed in the common Books of natural Philofophy, which are as it were Commentaries upon Ariftotle's Books concerning the World. I have alfo treated of the Nature of the Stars and their Influences. And after having explained wherein Gravity and Levity confift (which I could not fpeak of in the firf Part, not having premifed what was neceffary,) I conclude this Part with explaining the Flux and Reflux of the Sea.

The third Part is taken up in explaining the Nature of the Earth and of terreftrial Bodies, that is, of the Bodies contained in it, or which furround it, as Air, Water, Fire, Salts, Oyls, Metals, Minerals, and Meteors.

Laftly, I have endeavoured in the fourth Part to comprife all that is hitherto, with any Certainty, known of the Animal Body.

One Thing perhaps will be obferved in the Method I have taken, viz. that I have been pretty long and particular, in explaining, in the firt Part of this Book, all the fenfible Qualities, which Philofophers ufually explain, and that but briefly, at the End of their Treatifes of Philofophy, in which they comment upon thefe Books of Ariftotle's concerning the Soul. The Reafon of which is, becaufe this teaches us to know ourfelves, and becaufe hereby. we are feafonably freed from a popular Errour, and a Prejudice which

The AUTHOR's PREFACE:

which we have entertained from our In: fancy, which I have known by Experience a great many never to have been able to get rid of, not even after they have gone through their whole Courfe of Lectures, but have brought back from the Schools thofe Habits they carried thither, viz. the afcribing their own Senfations to the Objects which caufe them, and the confidering,thefe Senfations as Qualities in the Objects.

Further, you will not find a great many Things in this whole Treatife contrary to Ariftotle; but you will find more than I could wifh that are contrary to moft of the Commentators upon him: And befides this, you will meet with a great many Things, which neither Ariftotle nor his Followers have treated of at all, which I have however judged more ufeful than many others which Philofophers have wholly imployed themfelves in. And in all this I did not think it very ill in me to depart from fome particular Notions, when I found that thefe Notions were difagreeable to Truth.

But what has very much abated thofe Scruples which I had about this Matter, is, that when I came to compare thofe Places in this Treatife which are contrary to Ariftotle, with the Writings of the publick Profeffors of his Philofophy, I could not find near fo many in my own Works as in the Works of others. And without enumerating the Particulars, it is eafy to be fatisfied herein,

The AUTHO R's P REFACE.

if we do but confider, that there is fearce any Queftion in Controverfy, but one half of them draw Conclufions directly contrary to the other half. Whence it follows, that we muft neceffarily find in the Writings of thofe who profefs to teach the Doctrines of Ariftotle, as many Places againft him as for him.

But though all the Philofophers did agree with each other and with Arijotle, I don't fee that this Agreement of theirs ought ro force meto be of their Opinions, nor that Philofophers can pretend that I am obliged to follow them, in what I am fully perfuaded and convinced they are in the wrong of. For fince it is the Cuftom with them to propore the Matters which they treat of, in the Form of Queftions, this very doubting Manner of theirs fhows that there is a perfect Liberty of taking that Side which we think to be moft reafonable. In what Manner my good Intentions will be received Time will fhow. However, I am preparing a Latin Verfion for the Ufe of Forcigners, with whom 1 hope to meet with a favourable Reception.

The CONTENTS OF

PA RT I.

CH A P. x. The Meaning of the Word Phyficks, and the Manner of treating foch a Subject. 2. An Examination of the Notions that proceed the Study of Natural Philosophy.
3. The Manner of applying Philosophy to particular. Subjects.
4. A Caution concerning Words.
5. The principal Axioms of Natural Philosophy:
6. Of the Principles of Natural Things.
7. Of Matter.
8. Some Corollaries of the foregoing Notion.
9. Of the Divijbility of Matter.
10. Of Motion and Reft.

1. Of the Continuation and Ceffation of Motion:
2. Of Such Motions as are commonly ascribed to the Fear of a Vacuum.
3. Of the Determination of Motion.
4. Of the Composition of Motion and of its Determination.
5. Of Reflexion and Refraction.
6. Of hard Bodies put into Liquors.
7. Of Accretion, Diminution, and Alteration.
8. Of Forms.
9. Of Elements according to the Opinion of the Ancients.
10. Of the Elements of the Chymifts.
11. Of the Elements of natural Things.
12. Of the Form of a Hard and of a Liquid Body, or of Hardness and Liquidity.
13. Of Heat and Cold.
14. Of Tales.
15. Of Smells.
16. Of Sound.
17. Of Light and Colours, and of Transparency, and Opakeniss.
18. A Description of the Eye.

The CONTENTS.

29. How Vi ron is commonly explained.
30. Of the Pajfage of the Light through the Humours of the Eye.
31. What wee mean, when wee $\int a y$, that the Images of the Objects are impreffed upon the Organs of Sight.
32. How Vijion is performed.
33. Of Dioptricks.
34. Of Looking-Glaffes.
35. A Solution of Some Problerris concerning Vijoin.

PAR T II.

1. F the Meaning of the Word Cofmographys and the Ucefulves of of the Science.
2. General Observations.
3. Conjectures how to explain the appaicht Motions of the Stars.
4. Of the principal Points, Lines and Circles, whits $=$ are imagined to be upon the Superficies of the World.
5. Of the chief Uses of the Circles of the Sphere of the World.
6. Observations about the Sun's Notion.
7. Conjectures how to explain the Phenomena of the Sur.
8. ObServations and Conjectures about the fixed Stars.
9. ObServations about the Noon.
10. Conjectures whereby to explain the Phenomena of the Moon.
ir. Of Eclipses.
11. Of the true Bigness of the Earth; Moon, and. Sun, and of their Diftance from each other.
12. Of the Phenomena of Mercury and Venus.
13. Conjectures for explaining the Phenomena of Alarcary and Venus.
14. Of the Phenomena of Mars, Jupiter, and Saturn.
15. Conjectures whereby to explain the Pha:zomena of

Mars, Jupiter and Saturn.

The CONTENTS.

An Explication of the Phxnomena, upon Suppofition that the Earth turns about its own Center in Twenty-four Hours.
17. A Caution about the Poles and the Circles.
18. An Explication of the Sun's Phanomena.
19. An Explication of the apparent Motion of the fixed Stars.
20. An Explication of the Motions of Mercury and Venus.
21. An Explication of the Motion of Mars, Jupiter and Saturn.
22. An Explication of the Moon's Motion.
23. Of the Syltem of Tycho-Brahe.
24. Reflections upon the Hypothefes of Ptolemy, Co-
pernicus, and Tycho.
25. Of the Nature of the Stars.
26. Of Comets.
27. Of the Infuences of the Stars, and of judicial Aftrology.
28. Of Gravity and Levity.
29. Of the Flux and Reflux of the Sea.

P A R T III.

I. F the Earth.
2. Of the Air.
3. Of Water.
4. Of Salt.
5. Of Mineral Oil.
6. Of Metals.
7. Of Minerals.
8. Of the Load-Stome.
9. Of fubterrancous Fires and Earthquakes.
10. Of Fountains.
i1. Of Winds.
12. Of Mifts and Clouds.

13: Of Rain, Drizzle, Dews, and Evening Damps.
I4. Of Snow, Hail, andHoar-Froft.

The CONTENTS.

15. Of Honey-Dew, extraordinary Rain, and Manna. 16. Of Thunder, Lightning, and Thunderbolts. 17. Of the Rain-bow.

P A R T IV.

1. F the Things contained in this Fourth Part.
2. \circlearrowleft general Defcription of the larger farts contained in a bumine Body,
3. Of the Brain, Nerves, and Mufcles.
4. Of the Heart.
5. Of the Veins and Arteries.
6. Of the Lactea! and Lymphatick'Veins.
7. Of the Tongue and Salival Dutts.
8. Of the Lungs.
9. Of the Liver.
10. Of the Spleen.
11. Of the Kidneys and Bladder.
12. Of the Motion of the Blood.
13. Of the Pulfe, or Beating of the Heart and Arteries.
14. What Time the Blood circulates in.
15. Of natural Heat.
16. Of Nourifbment and Growth.
17. Of the Animal Spirits, and of the Motion of the Mufcles.
18. Of Refpiration.
19. Of Waking and Sleeping.
20. Of the Concoction of Meat.
21. Of the Motion of the Chyle.
22. Howv the Blood is made.
23. Of the Excrements.
24. Of Hunger and Thirft.
25. Of Sickneلs and Health.
26. Of a Fever.

ER-

งโู

ROHAULT's

ROHAULT's

S Y S T E M

O F

Natural Philofophy.

PARTI•

CHAP. I.

The Meaning of the Word Phyficks, and the Manner of treating fuch a Subject.

HIS Word, Pbyficks, ftrictly fieiking, and according to the Etymology of it, fignifies no more than Natural; but we here ufe it to fignify the Knowledge of natural Things, that is, that Knowledge which leads us to the Reafons and Caules of every Effect which Nature produces.
2. But becaufe we muft firit ftudy natural Philofophy, 2. That it is before we can be certain whether there be any fuch thing ${ }_{\text {at }}^{\text {ne pedlefs tof.fops }}$ as Pliyficks or no; I fhould not proceed in a proper Me- at prefitions. thod, if I fhould here undertake to refolve this Difficulty.

I fhall not therefore at all infift on this, nor any other Queftions which are commonly called previous ones. We had better at firft remain in fome kind of Doubr about theie fort of Queftions; but fuch a Doubt only, as ought not in the leaft to hinder us from ufing our utmoft Endeavours to acquire this Knuwledge, and to obtain the End propofed, without neglecting any Thing, that may ferve to illuitrate the Truth, and explain the Effects of Nature.
3. That the 3. One Thing we ought particularly to take notice of, Notions of the Antients may and that is, that all they who apply themfelves to the Study of Natural Philofophy, are not Perfons utterly ignorant; for by their Converfation with learned Men, by reading of Books, by Experiments, and particular Obfervations, their Minds are filled with variety of Notions. But becaufe, perhaps, we have given too much Credit to the Reports of others, or perhaps have not throughly examined what we have received by our own Senfes, or have impofed upon our felves by falfe Reafoning; therefore we are not to think; that there is any great Advantage to be had from that Knowledge which is got by thele Means: On the contrary, it may be very injurious, becaufe the Errors imbibed in our tender Age, before we could make a right Ufe of our Realon, may caufe us to fall into ftill greater ones.
4. That they 4. Wherefore if we would proceed regularly, we muft oryght tobere- lay afide all our old Prejudices, and reject them as falfe; not
cimaminct. that we are immediately to embrace the contrary Opinions as true, but only fo to difpofe our Minds, as to give Credit only to thofe Things which we have throughly. examined; and to begin natural Philofophy at the very Beginning. But feeing this is a very difficult Task, and it is hard to bring our felves to it, becaufe we eafily, perfwade our felves, that amongft the Errors that have privately crept in, there have been alfo a great many Truths, which ought by no ineans to be rejected; we will therefore go in the common Method, and retaining as many of our antient Opinions as we can, we will endeavour to lighten that Burden which cannot but be very heavy. And we muft be very unreafonable indeed, if we will not review our old Notions, and fubmit them to a frefh Examination.

C H A P. II.

An Examination of the Notions that precede the

 Study of Natural Pbilofophy.THE Notions which precede the Study of Natural r.The VVbole Philoiophy, may be reduced to two general Heads. of natzral For firl, we know that there are Things really exifing in the World; and from hence we think we know, at leaft in part, what they are. Thefe two Confiderations are principally to be attended to, that our propofed Examination

Pbilofoppy may be comprehended zmder two Heads. may be as univerfal as poffible. Let us firf fee what Motives there are to induce us to belicve, that there are certain Tbings really exifting in the World; and then let us fee what Reafon we have to believe them to be fuch as we judge them to be.
2. And to begin with our own felves; we know by experience, that we are capable of diverfe Thoughts, which cannot be in us, but they muft be perceived. Tie Idea of Exifence is one of thefe Thoughts; and our natural Rea-ifence. fon teaches, that Notbing canbave no Properties, and that rwbat tbinks, muft exift. Hence it is plain how we come by the Knowledge of our orwn Exijtence. For cvery Man muft neceffarily reafon in this manner: I think; that which thinks muft of neceffity exiff; therefore I exift.
3. A Man who comes to the Knowledge of his Exitence in this manner, knows himfelf only to be fomething that exifts, the Idea of which does not include Extersfort in it. It is true, he may have an Idea of a Thing extended into Lerggth, Breadtl, and Heigbt; but becaufe this Idea does not at all include Thought in it , the Thing that tioinks, tro really wiand the Thing that is extended, are to be looked upon as two Things really different from each other; and there is no Reafon hitherto. for fuch a Perfon to think himfelf an extended Thing. And becaufe That which thinks, which is in us, which we know before all other Thinge, which we imagine not to be extended, is what we call our soul or Spirit, and 'That which we conceive to be extended in Length, Breadth, and Height, and to which we imagine Thought does not belong, is what we call our Body; it is evident, that our Soul or Spirit is known to us fooner than our Eody.

4 That we have no other knowledge of the Exifience of thore Bodies of mhichs the World is compofed, but by the different ways of knowing that are in us. 5. What the fe Ways of Knombedye are.
6. What is meant by Per^{-} ception or I magination.
7. What is meant by Fudgement.

> . the Mind, when, according to the different manner of its Thus when we fay, that the Earth is round, we join together the two Things which we underttand by the Words Earth and Roundnefs, and this is called Fudgement: So alfo when we fay that the Earth is not round, that is, disjoin thofe Words; this is alfo called Fudgement.
8. What is 8. Reafon is a Judgement that depends upon a former meant by Reafan. Judgement. For Example : After I have judged, that no even Number car be compounded of five odd Numbers, and alfo, that the Number Twenty is an even Number, and thence
conclude, that the Number Twenty cannot be divided into fo, that the Number Truenty is an even Number, and thence
conclude, that the Number Twenty cannot be divided into five odd Numbers; this is called, Reaforing.
9. What is 9. Se:ifations, is Toucbing, Smelling, Tafing, Hearing and meant by Scafation.
10. That Perception alone is not afeffe cient Afis-
raizce of the Exifecuice of ary Thin?.
11. Neither does Funderment alou. fully convinuce uts of the Exijferice of akings.
4. As to thofe Bocies of which the Vornd is compuied, (amongt which our own is to be reckoned) it is certain we cannot know that they exift, but by the different Ways of Knowledge which are in us; and in order to know if we have made a right Ule of them, we will here confider each of them diftinctly.
5. The different W ays of Knowledge that are in us, may all be reduced to thefe Fuur: viz. Perception, Fudgement,. Reafor, and Senfation.
6. By Perception is meant fimple Apprehenfion, or the fimple Idea which we thave of Things, without affirming or denying any thing concerning them; whecher this Idea raifes any Image in our Minds, and fo is called Imagination, or raifes no Image, and fo has only the general Name of Perception given to it. Thus when we hear the Word Tree, the Idea which we then form in our Minds, is an Imagination; but when we fpeak of a Thing which cannot be reprefented by any Image, as of Doubtfulnefs; the Idea which we then have, is only fimple Perception.
7. Fudgement is the joining or disjoining of two Things by conceiving them, it affims or denies the one or the other. Seeing.
10. Firf, it is evident, that the bare Perception of a Thing is not fufficient to convince us that the Thing it felf exifs; for Inftance, becaufe I can conceive a Triangle, it does by no means from thence follow, that a Triangle exifts.
rr. It is certain alfo, that our 7 udgement alone is not fufficient to convince us of the Exiftence of any Thing. For though we cannot help paffing our fuadement upon many Things; for Inftance, That if two Things be cqual to a Thirds they are equal to eachother; that if Equals be added to Equals, their Sums will be equal, \&cc. notwithftanding which, we do not certuinly know, that any Things that are equal or
unequal exift, and the Truth of our \mathcal{F} udsement agrees only to the Things that may poffibly exit.
12. We may alfo reafon infinitely various ways; and by this means all the Mathematical Truths are difcovered, which are fo different from one another, and from the Principles from which they are deduced: But becaufe the Confequences have aftrict Relation to the Antecedents, and can contain no more in them than they; and we have already feen that our Fudgement does not prove that any Thing exifts; it follows, that our Reaforing proves no more than this, that Things without us may porfibly exit.
13. However, ' there is one Exc ption to this Rule, and 33, The Exthat 1s, God: For whoever has the Idea of Him, may by $\frac{i t r e n c e ~ o f ~ G o r d ~}{\text { may }}$ be proReafon be affured of his Eviftence, if he be confidered as med by Reaa Being every way perfect, and if Exittence be owned to fon. bea Perfection. But Ithall not here enter into the Particulars of this Demonftration; the Dignity of this Subject merits to be treated of particularly by it felf.
14. But fince we are here fpeaking only of natural Things, and our Perception, fudgement, and Reafon alone do not prove their Exitence, we muft certainly have recourfe to our Senfes betore we can judge that they exit. And we cannot know whether our Serifes do fufficiently prove this, nor in what manner they prove it, unlefs we firft define what we mean by Sinfation.
15. Long Cuftom makes us many times reafon with fo much eafe and readinefs, that very often, Reafon and Senfation go together, when we think that Senfation only is concerned: Wherefore that we may not confound the one with the other, and fo be led into Error, let us examine this Matter in other Perfons. Let us fuppofe a Man jult born, and that he was in an extraordinary manner endued with the Judgement and Prudence of a grown Perfon; and, that we may examine only one Senfe at a time, let us fuppofe that his Eyes are not yet open, and, that he is put into a Place, where there is no kind of Smell or Noife.
16. Now in order to find out what the Senfe of Feeling is; let this Man's Arm be prick'd with a Needle. It is manifert, that he will feel the fame fort of Pain that we feel, when at any time we are pricked with a Needle, becaufe we fuppofe him to be fuch a fort of a Man as we

[^0]and fubtle an Argriment; that drawn from the Variety, Beauty, Order, and Difpofition of the Creation, does much more fully and frongly infer a Gori. it is evident, that Senjaction in this Man is nothing elfe, but the bcing affected with a certain Pain, which belongs to himedf only. So that if any Perfon were fo weak as to believe, that a like Pain was in the Needle, we fhould cerrainly knoiv for all that, that it was not the very Pain which the INan by Senfation felt.
17. That we 17. Let us make fome Reflection here: In the Senfatione fect the priciking, and zoothing clfo. now mentioned, thare are four Things obfervable: Firit, A Man capable of Senfation: Secondly, A Needle, or the Object that raifes the Senfation: Thirdly, The Attion of a Needle upon the Body, in which it produces fome Change: Laitly, The Effect of the Action of the Needle, and of the Pafloz: of the Body, namely, the Prickiag, or the Pain. Now fince 'tis this Laft only that is known, we muft conclude, that this Senfatiorz not being attended with any Judgement or Reafon, is nothing elfe but a conifufed Per-. ception arifing from the new State of the Mind, which does not any way make known to us this new State, nor the external Object which caufes it, and is the Occafion of the Senfation.
18. Tris E_{x-} 18. From what has been faid of that Pains which is cauamplte teactises fed by a Needle, it is eafy to apprchend the fame thing of
uss what the Serfations of the other Sort of Senfations, fuch as Feeling, Taffing, and Feciing, Tafl-
ing mat Smel
Smelling. For fuppofe the naked Arm of the forementiing gunt Smel-
liag arce oned Perfon to be lightly touched with a Feather, or any other foft Thing; fuppofe a red-bot Coal, or a Piece of Ice to be laid ou any part of his Body; fuppofe a Drop of Wine poured on his Tongue, or a Rufe, or any other fweetfinelling Thing put to him; we can eailly undertand, that the Tickling, the Heat, the Coll, the Taffe, and the Syzell, which this Man perceives, are all within himfelf, and belong to him in the fame manner as the Pain did.
19. Arifotle 19. And fince there is no Reafon why we fhould think band good Rca-
foan tif afferm,
difently of the Senflations of Heariugg and Sceing than of Soun zo Sfirnh,
tbat Sesffati: that Seltatiti.
on and 1 andfoun weere the fame. the others, we may look upon it as certaii, that Sound, and Light, and Colours, are as much in us as Pain or Tickling. Wherefore we may fay with Arifotle, ${ }^{1}$ that all Senfation is a kind of Paffor, and when we have any Senfacion, whatever fort it be, we know very well what the Objects raife in us, but we don't know what they are in themfelves.

[^1]20. But this is not the general Opinion of Mankind, 20. A wulwho, on the contrary, are apt to think, that the Sound dar Error. which they hear, is in the Air, or in the founding Body as they call it ; fo alfo that the Light and Colours which they fee, are in the Flame or the Tappfry which they look upon; and the Rearon of it is this, becaufe we do not feel I Sound, and Light, and Colours within our felves, as we do Pair and Tirkling, but afcribe them to external Things; and befides, the Colours which we fee, oftentimes feem to be much bigger than our felves.
21. But to thow that theic Reafons are not of any 2 r. The comWeight, we need oniy confider, that very often we have reffrted by a Perception of a Multitude of Things, which we think many Expeare without us, and are a great deal bigger than our feives, riments. when at the fame time there really is nothing without us, that is the Caufe of that Perception.
22. Firft, In Dreams we very often hear Sounds, and 22. I. Expefee Colours, in the fame manner as if we were awake, and riment. we afcribe chofe Sounds and Colours to external Objects; and we imarine thofe Colours to be much larger than our felves; though there is indeed nothing without us, to which they can truly be arcribed.
23. Secondly, Perfons in a Pheafie, or in a violent 23.II. ExFever, fee alfo Things without them, which really are ${ }^{\text {periment. }}$ not fo.
24. Tibirdly, We often hear a Rirging in our Ears, or a 24. III. Excertain Sound which we judge to be at a great diftance, periment. when the Caufe of it is very near us.
25. Fourtbly, A Cardlle, or any other fmall Object, at alittle 25. IV. Exdiftance, appears double to a Perfon in Drink; or if we periment. prefs the Corner of our Eye with our Finger; fo that there will then appear to be two Objects, when we certainly know, that there really is but one.

1. Sound, and Light, and Colours, \&zc.) In order to account for thefe Prejudices, we may obferve, 1. That Pain and Tickling do much more ftrongly affect us, and make a greater Change in the State of the Mind, than Sound, and Light, and Colours; fo that they are fooner and more cafily taken notice of, and imagined to belong to us, and to be in us. 2. When Sound, and Light, and Colours, are at firft perceived, there is aiways fomething before us, that acts upon us, and to which we afcribe thein: But Pain and Tickling often arife
from an invifible Alteration of the fmall Particles of the Body, that is, from a Cuufe at firf unknown to us: Therefore-we are a long while ufed to look upon thefe as fomething in us; , cill there appears to be fomething without us, to which they may be afcribed; and afterwards, when we do fometimes expecience, that they proceed from various external Things, we are filll apt to think, that they are not in thofe external Things, but in our felves, becaufe we have been ufed to think fo.
2. V. Experiment.
3. Fifthly, If in the Dark we wink with our Eyes upon the Flame of a Candle at a lietle diftance, we thall imagine, that we fee Rays of Light, which feem to ftrean from the Flame upwards and downwards in the Air; and yet there is no doubt, but that thofe Rays arife from the Senfation of him that perceives them, and that out of him they are nothing; if we conficier, that other Perfons who look upon the Candle at the fame time, do not fee them; and the Perfon himfelf who fees them when he winks, ceales to fee them the Moment that he opens his Eyes, and looks more intently.
4. There is
5. We fhall be more fully fatisfied, that thefe Rays are fomething re- not in the Place that we imagine them to be, by this
markable in this Eaperiment.
=S. VI. Ex-
=8. VI. E
perinent. Confideration; If they were there, it would follow, that upon putting a dark Body between the Eye and the Place where they appear to be, they muft immediately vanifh; but they do not vauifh, but on the contrary are feen fill, only a little nearer, viz. between the Eye and the dark Body that interpofes. But that which is moft obfervable in this Experiment, is, that if the dark Body be raifed by little and little, as if the lower Rays were intended wholly to be hidden by its Interpofition, they will be fill feen, when the upper ones wholly difappear; which could not be, if the Rays were really in the Place which they feem to be in.
6. Sixtbly, We fee the Colours through a triangular Glafs Prifm, very bright, and exasly like the Colours in the Rainbow; thefe we certainly know are not where they appear to be.
29.VIIIEw-
Deriment. 29. Of this kind are the Experiments of Looking-Glafperiment. fes and Multiplying-Glafts, which reprefent Objects to us, where we are fure they are not.
30.VIII.Ex- 30 . We mult not here omit an Experiment of thofe periment. Perfons who have loft any of their Limbs, an Arn, or a Leg, who, many Months, and fometimes many Years after thay are cured, feel frequent Prickings, and ocher Senfarions, which they cannot help judging to be without them, viz. in thofe Places where their Fingers or Toes would have been, if they had not been cut off. This Judgement is evidently a Miftake, it being certain, that this Senfacion is within themfelves, and not where they take it to be.
7. 1 Difficziticy which arifes from the commen cuffom of Spcaking.

3r. This Experiment, together with all the foregoing oncs, plainly fhow, that we have within our felves the Senfations of many Things, which we cannot help thinking are without us, though they really are not; and were it not for the common Way of Speaking, which is the u-
fual Reafon given, we ought wholly to lay afide that vulgar Notion, which we have entertained in our Minds from our Infancy, viz. that they are witiout us. For (may any one fay) as he who touches a Stick, has reafon to believe, that the Stick is fomething without him that touches it; fo when any one fays, that he fees a Colour, he has Reafon to fay, that the Colour which he fees, is fomehing different from him that fees it, and belongs to the Object.
32. But it is eafy to get clear of this Difficulty, if we ob- 3^{2}. The consferve, that all Languages do not afford equal Plenty of mon way of Words upon every Subject. Thus for Example, in the ${ }^{\text {Speaking ex- }}$ Latin Tongue, the Word Animal is ufed to exprefs the Kind, under which the whole Species of Animals is contained; the Words Man and Horfe, are ufed to fignify thofe Species ; and the Words Peter and Paul, Bucephalus and Bayard, to fignify the Individuals of thole Species: But the Cafe is different in the prefent Subject; we ufe indeed in our Language the Word Semfation, by which we underftand, in general, every Perception which we have by the means of Bodies; we have alfo the Words Fecling, Tafing, Smeling, and Hearing, to fignify the particular Species of thofe Senfations; but if we would defcend to any thing ftill more particular; we then want Words, and are forced to make ufe of a general Name, with which we only joyn iome other Word, to determine its Signification: Whence it follows, that when vee fay, for Example, that we feel the Heat, or that we fee the Colour, if we forbear Reafoning about them, and attend only to the bare Senfation; the Feeling ought no otherwife to be diftinguifhed from the Heat, nor the Seeing from the Colour, than in any Species, ${ }^{\text {² }}$ the Genus is diftinguifhed from the Difference: For the Colour and the Heat are Senfations which belong to our own felyes only, and are nothing more than our own Perceptions.

1. The Genus is diffinguifhed, \&c.) The Author's Meaning is this, that many People are led into Error, by the Forms of fpeaking; as when by reafon of the Fewnefs of Words, our Meaning cannot be expreffed but by more Words than one; thus when we fay, that we fee Rednefs, or feel Heat; they fo underitand it, as if by one of thefe Words we intended to fignify the Semfation it felf, and by the other, to fignify fomething without tis, which is the Caufe of that Senfation. Now if what we call fecing

Redness, and feeling Heat could be exprefled by one word, as P arin, which is the fame Thing as fecling Pain, or Tickling, which is the fame as feeling, Tickling, are exprefled by one Word; we fhould caffily apprehend, that the Rednefs which we perceive by our Sight, and the Heat which we perceive by our Fceling, are no more without us, than the Pain which we feel when our Arm is pricked with a Needle ; or the Tickling, when it is souched lightly with a Feather.
33. The Conformity there is betmixt sight and Feeling.
33. Though I have been already too long in fhowing that what we perceive fimply by Sight, is wholly witbin our felves; I would yet make appear the entire Conformity there is betwixt Seeing and Feeling. Let us confider then, that when an Object of Feeling affects the Body but lightly, it raifes in us indeed a real Senfation, but it is fo weak an one, that it is gone as foon as the Object ceares to touch the Organ of Senfation; fo likewife, if the Object of Light be weak, it is no fooner removed from our Eyes, but we ceafe to fee it. And as an Object of Feeling, which ftrikes us with a greater Force, excites a Senfation, which remains after it is feparated from the Organ; in the fame manner alfo, a very ftrong Object of Sight, raifes a bright Senfation, which continues for fome time, though we do not look upon it, but turn our Head another way. Thus if any one looks full upon the Sun, and immediately goes into a dark Place, he will fee the Sun there, and fome Sparklings of it.
34. That we Fruve onade xsfe of feveral Mcans of Krowledge, in order to be comvincedthat Thiats cexif mithoust us.
35. The Method which we proceed in.
34. From what has been faid concerning our Senfes, and the Manner of Senfation, fince it is evident, that they make known to us only what is in us, and belongs to us; it is alfo as cortain, that they are not alone fufficient to prove to us, that any Thing at all exifts without us which does not belong to us ; and this having been already fhown of every particular Means of Knowledge, we muft neceffarily conciude, that we have made ufe of feveral of thofe Means in order to be convinced that Things do exift without us.
35. The Method we feem to have proceeded in, is this. Firf, Senfation: Next, we obferve, That this Senfation is fometimes in our own Power, and fometimes not: Whence we infer, that we our felves are not the fole Caufe of our own Senfations; that we contribute fomeching towards them, but not fo much, but that we depend alfo upon fome other Caufe; and fo we begin to fee, that we do not exitt alone, but that 1 there are many other Beings exiting together with us in the World.
36. The Ex-活ence of Things cognizable hy our Senfes, is
made known to zes princioally by Rece foning.
36. Whoever acknowledges this Truth, muft confefs, that he has been in an Error fo long as he thought that the Exitence of Things without him was proved by his SenI. There are many other Beings, \&ec.)
But cuen this does not fcem fuffici-
ently to demonftrate, that corporeal
Things exift and indeed it does
not feem capable of a frict Demon-
Siralion. See Maibranch. Annot.
Clazp. Io. Book. I. of his Search after

Truth. We muft acquefce in this; That God has not created us in fuch a manner, that every Judgement which we make of Things exifting withour us, foould be inevitably falfe. See Cartef. Princip.part 2. Artic.I.
fes; for all that thefe can do, is only to be the Occafion of knowing them; and it is chiefly from Reafoning that we are affured of their Exiftence.
37. In the fame manner as we conclude from one fingle Senfation, that one Thing exifts; we conclude alfo from different Sorts of Senfations, that there are different Things exifting, all which, becaufe we imagine them to be ex- dies exififin" tended in Length, Breadth, and Thicknefs, we call Bodies.
38. Amongtt thefe Bodies, there is one which we confider differently from the reft, and are obliged, in a fpecial manner, to look upon as our own; not only becaufe it is always prefent with us, but alfo, becaufe, when any Alteration is made in it by other Things, it caufes certain Senlations in us; and on the other hand, certain Thoughts in us, produce certain Alterations in that. Thus if I will to move my Arm, it is prefently moved; but if I will to move another Body, that will not be put into motion by my Will alone.
39. We may further obferve, that after the foregoing Reflections have convinced us that our Body is compofed of many different Parts, fome of which are the Organs of Senfation; the different Senfations we have, are no longer a certain Proof of the Exiftence of a Number of Things without us : For there is juft Reafon to fufpect, that the fame Object may raife different Senfations in us, by acting upon different Organs; and therefore though the Fire by affecting our Eyes when it is at a great diftance, raifes the Senfation of Light; and when it is near, raifes the Senfation of Heat by affecting our Hands; yet we cannot from hence collect the Exiftence of more than one Object.
40. There is another Miftake contrary to this, which it is eafy to fall into, and therefore ought to be avoided. For, does it not feem reafonable to determine with Affurance the Exiftence of many Things, without any danger of being deceived, if in making ufe of but one Senfe, and employing it in but one manner only, it reprefents to us many Objects at the fame time? Now that we may not be deceived here alfo, we ought to confider the Medium through which the Action of the Object is tranfmitted; for Example, a multiplying Glafs makes us fee many Objects at once, when there is only one that really affects our Eyes; which thows, that here allo we may be deceived.
40. 1 Precaution, in caution, ${ }^{\text {cin }}$
order to be certain of a Number of Things.
 39. We are rot to think that there are as many Things cxift. ing woithout ss5, as wpe. have differcns Scnfations.
38. How we come to the Knorsledre of our own Body in particular. 37. Hoto we knowo that therc are many forts of Boaies exifing.

 -
\qquad

41. The Siznification of the Names wobich we give to many Things.
41. Thefe two Obfervations teach us, that we ought not to judge raihly, nor at firft Sight, that a Number of Things exift: However, after having taken all the Precautions requilite, when we are once plainly and fully convinced of their Exiftence, by Means of the different senfations which they raife in us; we cannot helparguing from the Act to the Power, as Philofophers call it, which is very natural to all Perfons; and thence concluding, that thofe Things have within them a Power to affect our Senfes: And hence it is, that we give Names to thofe Things, fignifying fuch different Powers. Thus a Body which raifes Heat in us, we call a hot Body; and the bare Power of raifing this Senfation in us, we call the Heat of this Body.
42. 11 Mif42. Whence it is plain, that they are deceived, who, betake about ths Signification of Words. fore they have ftudied Philofophy, underftand thefe Words in a larger Senfe than was faid before; for example, who, when we mention the Heat of the Fire, imagine prefently, that there is fomething, I know not what, in the Fire, like that Heat which the Fire raifes in us; for the giving of a mere Name only to a Thing unknown does not at all make that Thing known to us.
43. Arother Mifinke.
43. They alfo deceive themfelves as foolifhly, though to appearance they are more acute, who, in order to prove that there is in the Fire fomething, I know notwhat, like that Heat which it excites in us, bid us go near it and try: Now, though we a thoufand times go near it, nay, though we were forched by it, all that this demonftrates, is only what the Fire does to us, and not what it is in it felf. When we fpeak therefore of the Heat, or Cold, or Smells, or Sounds, or Light, or Colours of Bodies, to fay, that they are really Things which are properly Objects of our Senfes, is a great Miftake. For he who fays this, muit imagine, that we come to the Knowledge of them by bare Scnfation only, which is abfolutely falfe.

C H A P. III.

The Manner of applying Pbilofophy to particular Subjects.

THE Obfervation which we have now made, is of fo great Importance, that it alone fhows us the true Merhod of Philofophy on particular Subjects: For from Philofophy. hence we learn, that in order to find out whac the Nature of any Thing is, we are to fearch for fome one Particular in it, that will account for all the Effects which Experience thows us it is capable of producing. Thus, if we would know what the Heat of the Fire is, we muft endeavour to find out fome particular Thing, by means of which, it is capable of producing in us that Sort of Tickling, or pleafant agreeable Heat which we feel at a little diftance from it ; and that Sort of Pain, or fcorching Heat, which we feel when we approach too near it; and the fame Thing mult alfo explain to us, how the Fire comes to rarify fome Bodies, and to harden others, and to diffolve others: In a word, it muft explain all the Effects that Fire produces. And in order to this, we are principally to guard againft any Prejudices we may have entertained concerning it; and not immediately to imagine, that there is in the Fire the fame kind of Heat, whether pleafant or fcorching, which ive feel, when at a diftance, or near to it. For indeed, there is no more reafon to attribute fuch fort of Heat to the Fire, than there is to afcribe the fame fort of Pain to the Needle, which we feel when we are prick'd by it; and as he would without all doubt be deceived, who hould afcribe the fame Pain that we feel to the Needle; and would after this, labour to no purpofe, in trying to find out the Nature of it; fo likewife would it be in vain, after having afcribed to the Fire that fort of Heat which we our felves feel upon that Occafion, to attempt philorophically to explain the Nature of Fire; for nothing folid can be built upon fo bad a Foundation, nothing but Conjectures and Chimera's.
2. What is now faid of Heat, may be applied to all 2. Whenour other Things: And by this Rule, every Thing hereafter is to be examined, If that which we fix upon, to explain the particular Nature of any Thing, do not account clear- when noos. ly and plainly for cvery Property of that Thing, or if it be evidently contradicted by any one Experiment; then fectly agrees with all the Properties of the Thing, then we may efteem it well grounded, and it may pals for very probable.
3. Thus we muft content our felves for the moft part, to find out how Things may be; without pretending to come to a certain Knowledge and Determination of what they really are; for there may poffibly bo different Caufes capable of producing the fame Effect, which we have no Means of explaining.
4. When a - 4. Now as he that undertakes to decypher a Letter,
may be allowed very probable. finds out an Alphabet fo much the more probable, as it anfwers to the Words with the feweft Suppofitions; fo we may affirm of that Conjecture concerning the Nature of any Thing, that it is the more probable, by how much the more fimple it is, by how much the fewer Properties were had in view, and by how much the more Properties, different from each other, can be explained by it. Thus, for Example; if having taken notice only of four Properties of a Thing, we form fuch a Notion of it, that the Conjecture we make to explain them, will hold as ftrong for twenty Properties which we find to be in it; it is certain, that thefe are fo many Proofs that our Conjecture is very good.
5. Whers a Conjecture is fuch as may be allowed for a Truth. y, different Properties in the fame Thing, that we fhall find it very difficult to believe, that they can be explained two different ways. In which Cafe, our Conjecture is not only to be looked upon as highly probable, but we have Reafon to believe it to be the very Truth.
6. We ought not too eafily to part with a Conjecture. that is well grotinded.
6. Laftly, To prevent any Scruples that may afterwards arife, we muft confider, that, if our Conjecture be otherwife well grounded, it does not lofe its Probability, becaufe we cannot upon the Spot explain by it a Property, which appears from fome rew Experiment, or which we did not before think of: For it is one Thing to know certainly, that a Conjecture is contrary to Experience; and another Thing, not to fee how it agrees to it; for though we do not at all fee the Agreement, it does not from thence follow, that it is repugnant. And it may be, though we don't fee it to Day, we may fee it to Morrow; or others who can fee further than we, may at one time or other difcover it. Thus, as we fhall fee * afterwards, Telefcopes which were not in ufe till our Days, have confirmed the Hypothefis of Copernicus, concerning the Motion of Vonus and Mercury, which feemed not very well to agree with the different Magnitude of Venus at different times. CHAP.

* Part II. Chap. 14. Artic. 7.

C H A P. IV.

A Caution concerning Words.

SINCE we are accuftomed to connect cur Thoughts with our Words, and oftentimes attend more to the Words than to the Things fignified by them; that we may not for the future be led into Mittake by Words, we thall not make ufe of any here, nor have regard to any, whofe Meaning we do not clearly underitand. Wherefore in this Treatife we fhall wholly neglect fuch fpecious Words as Antiperifuafis, Sjmpathy, Antipathy, a Defire of Union, Contrariety, and the like. And as we do not ule them our felves, fo we thall have no regard to them from others, unlefs they tell us, very clearly and diftinctly, what they mean by them, and how we are to underftand them.

Left therefore we fhould fall into that Fault which we condemn in others, we fhall here define the Terms of Art, which, after the Example of mof Philofophers, we thall make ufe of.
2. The Word Being fignifies only that which is or exifs; for that which does not exift, is indeed nothing. For if any Thing be to exift next Year, we may*affirm, that at prefent it is nothing, and it is only the Idea which we have of it, that is any Thing.
3. We underftand by Subflance here a Thing which we conceive to fubfitt of it felf, independent of any other, created Thing: Thus a Piece of Wax is a Subitance, becaufe we conceive it to fubfift of itfelf, independent of any other created Thing.
4. Obferve here, that I don't fay abfolutely, that a Subftance is a Thing which fubfifts of it felf; but that it is a Thing which we concive to fubfint of it felf, which I fay on purpore to make this Definition of ufe. For though I kiow very ivell, that our Conceptions or Imaginations lay no Neceffity upon the Things themfelves, yet they are neceffary towards our judring of them, becaule we know Things from our Idea's only, and we ought always to judge according to our Thoughts:
5. We call that a Mode, or Manner of Exifing, or ans Accident, which we conceive neceffarily to depend upon fome Subftance. Thus, becaufe we cannot poffibly conceive the Roundreefs of a Globule of Wax to fubfift with-
out the Wax, therefore we call it a Mode or Manner of exiffing, or ans Accident.
6. That a Mode caminot be tranisferrca from onle Subject to another.
7. What is meant by a Quality.
8. That the mord © nality bas not a de= terminate Signification, but is bowewer ufeful. dent, cannot be transferred from that Subftance which is the Subject of it, to any other Subftance; for if it could, it would not then have depended entirely upon the firft Subftance when it was in it, which is abfurd.
7. By the World Quality we mean that, by which a Thing is denominated fuch; Thus that in the Fire, whatever it be, which has a Power to raife the Senfation of Heat in us, we call a Quality of the Fire, becaufe it is from this that the Fire is faid to be hot.
8. That which is to be feared here, and which hath made fome over-fcrupulous Perfons wifh that this Word were never ufed, but wholly fuppreffed, is, that fome Men foolifhly think, that they are very knowing, if they can but apply this Word, and fome other of the like Sort; to exprefs a Thing which they do not at all underftand. However, I cannot agree to them, but think it fufficient, if we do not ufe it in a bad Senfe. For it feems to me (as it did formerly to Arijfotle) to be very properly, ufed for that in general, whatever it be, which we conceive to belong to a Subject, and on the account of which, we give a particular Name to it. 'Thus, until we clearly and diftinctly underftand what the Heat of the Fire is, we may call it a Quality of the Fire.
9. What is meant by the Words Vertue or Facul2\%.
10. What the Effenco of a Thing is.

- right Lines. From whence it is evident, that allowing the Effence of a Thing, is allowing the Thing it felf; and on the contrary, taking away the Effence, is taking arway the Thing it felf.

1. What the effential Property of a Thing is.
II. We call that añ effential Froperty of a Ibing, which we conceive fo to belong to the Thing, that it is the neceffary Coniequence of its Effence: Thus, that any two Sides together, are longer than the Third; and that the three Angles are equal to two right ones, are Properties
that belong to the Effence of a Triangle; becaufe thefe fo belong to it, that they are a neceffary Confequence of a Figure's being terminated by three right Lines. So likewife it is the effertial Property of a right-angled Triangle, to have the Square of the Side oppofed to the right Angle, equal to the Squares of the two other Sides; becaule this to belongs to this Sort of Triangle, that it néceflarily follows from its being right angled.
2. We call that an accidental Property of a Thing, or in gencral an Accident, which we do not think neceffary to it; or which fo belongs to it, that it might have been without it, and yet not ceafed to have been what it was: Thus the Blacknefs in a Triangle is an Accident, becaufe this Colour is not neceffary to a Triangle; and it may be not Black without ceafing to be a .Triangle.
3. The Production of Something which before was not, we call Generation; thus we fay Fire is generated, when we fee Fire where the Wood was before; fo likewife we fay a Chicken is generated, when we fee a Chicken in the room of an Egg.
4. When a Thing is deftroyed, or ceafes to be what it was before, we call it Corruption; thus we fay it is a Corruption of the Wood, when we fee the Wood no longer, but only the Fire in the Place of it; And in the fame manner we fay an Egg is corrupted, when we fee the Egg no longer, but a Chicken in its Place.
5. A Thing is faid to be altered, when it has undergone fome Change, but not fo great a Change as for us not to know it again, or to have a new Name given to it: Thus when a Piece of Iron, which was before cold, is made hot, it is faid to be altered; for this Change is not fo great, but we know it to be Iron ftill, and do not give a new Name to it. We muft take particular Notice here, that the Alteration mult make bui a moderate Change; for if it be fo great, that we cannot know the Thing thus changed, we do not then fay that it is altereds but that it is corrupted.
6. By the firft Principles of natural Things, we underftand, that which is firt, and moft fimple in them, or that of which they are originally compofed, and beyond which they cannot be reduced. Thus, the firgt Principles of a Chicken, are thole Things which are united together to compofe a Chicken, and which are fo fimple, that they themfelves are void of all Compofition.
7. What is meant by that of Corruption.
8. What is mecint by the Word Gencration. the accilientald Property of a Thing is.
9. That the forcmenticned Terms Jignify no more than is contained in the Definiwion of them.
10. Now I do not pretend that the foregoing Definitions contain any fecret Things in them, nor do I defign they fhould pafs for Things very fublime, as fome Philofophers have done; but on the contrary, my principal Defign in laying them down here, was no other than to explain the Meaning of the Terms which I bave defined fo diftinctly, that no one might be deceived, in putting any other Senfe upon them more enlarged or reftrained; and to do it in fuch a manner, that no Fictions might be made out of them.
11. A Caution abozst the Me.wning of fome Nouns
Sutbfantives.
12. I fhall here add one Caution about Words, and it is this, That though thofe which we call Nouns fuffantive were invented to fignify Subftances; and Adjectives and Verbs properly fignify only Qualities or Modes, or Manners of exifting or acting; yet there are a great many Words, which in Grammar pafs for Nouns fubftantive; whofe Signification is the fame as that of Verbs. Thus when we fay that a Walk is wholefone, we mean no more than that it is wholefome to walk.
13. For want of attending to this Rule, the Generality of young Men, when they begin to ftudy, take the Things fignified hy thefe Sort of Nouns fubftantives, to be real Beings, and imagine them to have a particular Exiftence, and by this Means fill the World with Scholaftick Entities, and rational Entities, which they are many times fo poffeffed with, that they become incapable, all their Lives after, of applying themfelves to any Thing that is folid and fubitantial.

C H A P. V.

The principal Axioms of Natural Pbilofophy.

1. The Fomindation of natriral Philofipho.

AFT ER having explained the principal Terms made ufe of in natural Philofophy; I fhall now lay down fome important Trutbs, which are felf-evident, and which, being the Foundation of all Philofophical Truths, are confequently the principal Axioms of Philofophy.
2. The firft is, that Notbing, or tbat which bas no Exiffence, bas no Properties. Thus we cannot fay that Nothing is hot, or cold, can be divided, or has Parts, Or. Therefore where we know there is any Property, whatever it be, there we may affirm, that there is fome Thing, fome seal Being.
3. Secondly, It is inipofible that Something /hould be made 3. Axions II, of abfolute Notbing; or that mere Notbing canz become any Thing. This Axioms is a neceffary Confequence of the foregoing one, and proves it felf to them who grant that. For if Nothing can be made Something, it would follow, contrary to the preceeding Axiom, that Nothing has fome Property: Which is abfurd.
4. When I faid that it is impofible for Something to be made of Nothing, I exprefsly added the Word Abjolute, becaufe I do not at all doubt, any more than any other Perfon, that a Thing may be made out of what has nothing of that Thing in it, or to fpeak more clearly, may 4. In mblas be made out of that which is not that Thing. Thus for Example: No one can doubt, but that Bread may be made of Water and Meal, which are not yet Bread.
5. Thirdly, No Thing or Subftance can be wholly annibi- 5.Axiom III, lated; that is, fo ceafe to be, that there fbail remain nothing at all of it. Indeed; when any thing wholly difappears, we eafily apprehend, that it ceafes to be the Thing that it was, in order to become fome new Thing: Thus we eafily apprehend, that Corn ceafes to be Corn, in order to become Meal, and that every Part of the Meal may be ftill divided into other Parts, fo fmall that they may be utterly imperceptible; but how that which is Something, can become abfolutely Nothing, this is utterly unconceivable.
6. Fourtbly, Every Effect prefuppofes fome Caufe. This 6.AxiomIV. is fo generally allowed by all the World, that the dulleft of all, are led to admire certain Effects, for that very Reafon, becaufe they are perfwaded that they proceed from a Caufe, and that this Caufe is wholly unknown to them. If this was not a very true Axiom, we thould not fo much wonder at that moit known Property of a Loadftone for Example ; but reft fatisfied, with knowing only that the Iron does really approach the Loaditone, without wifhing for any Thing further.
7. Fiftibly, Which is a Confequence of the foregoing 7 . Axiom V. Axiom; If we our felves are not the Caufe of any Effect, it muft neceffarily depend upon fome otber Caufe. Thus, if I know certainly, that a particular Effect which is within my own felf, does not depend upon me; I certainly conclude, that it depends upon fome other Caufe.
8. Sixtbly, Every Thing, as much as it can, endeavours to 8. AxiomVI, continue in that State in which it is. Thus, if any Thing be fquare, it will continue always fquare, and will never of its own felf become round, or any other Figure. This
is what others mean, when they fay, that Noihing tends to the deftroying of it felf.
5.AxiomvII. 9. From whence it follows; Seventlly; That cevery Alteration is made by fome external Caufe. Thus if we fee a Flower in a Garden very frefh in the Morning, and in the Evening find it withered; we conclude, that either the Sun, or the Wind, or perhaps fome Perfons roughly handling of it, have caufed this Change, and though we could not at all guefs what it was that had made this Change; yet we fhould aferibe it to fome Caufe.
10. Axiom 10. Eightbly, Every Alteration is always proportioVIII.
11. That there are maniy more $A x-$ iorns.
12. That Things are here treated of in their satural Statr. nable to the Force of the Agent wibich caufes it. So that the Thing which is altered continues, as much as it can, in its firft Statc. Thus if a Body, which moves flowly, comes upon another Body at reft, and pufhes it before it, we cannot think that it can move this latter Body ifwifter than it goes it felf.
II. There are yet more Axioms which I thall afterwards draw many Conclufions from; but becaufe they are not fo general as thefe, I fhall content my; felf with mentioning them, when I have occafion to make ufe of them.
12. But before we proceed any further; as my Defign is to treat of natural Things, and to explain as well the Caufes by the Effects, as the Effects by the Caufes; that I may not go beyond the Limits of my Subject, but. contain my felf within the Bounds of the Science I treat of; I exprefsly declare, that my Defign is to confider Things in their ordinary and natural State, and that I pretend not to fay, or determine, what they are, or may be, in an extraordinary or preternatural State: Becaufe, I think, it is great Rafhnefs to undertake to determine, how far the Power of God can extend it felf, whom I acknowledge to be the Author of every Thing in the World, and who, I believe, can make a Multitude of Things above the Capacity of humane Underftanding.
13. That we suight not to fay, that there is any Thing which God ceantot do.
13. Wherefore I will never venture to affirm, that there is any Thing impolfible with God; and inftead of fpeaking in fuch a manner, which is too common amonght Philofophers, I will content my felf, with only faying, that fuch a Thing is not of the Number of thofe Things which I know he can do.

[^2]as an Addition of new Force. See below, Chap. xi. Art. 6.
14. And above all Things, I particularly guard my felf 14. T3at 202 2gainft enquiring into the Myfteries of Faith, and attempting to explain what is obfcure therein; becaufe I am firmly perfwaded, that that which God Almighty would be too inquishave to be a Myffery to the Ignorant and Unlearned, he would have to be fo likewife to the moft exalted Genius, and to them who think themfelves much greater Philofophers than I am.

C H A P. VI.

Of the Principles of Natural Things.

IN order to know what the Principles are, of which 1. Of Matnatural Things are compofed, we may take one partcr. ticular Effect for a Rule, and examine that; as for Example, what is done, when the Wood is converted into Fire: For by this Means, it will be eafy to judge, what paffes in other Productions of Nature; and this will, as it were, lead us by the Hand, and help us to difcover what natural Priaciples are, and how many there are of them. Firft then, becaufe, according to the Maxims before eftablifhed, it is impoffible to conceive the Wood to be wholly annihilated, or the Fire to be made out of abfolute Nothing, therefore we muft think, that there is Something which before belonged to the Wood, which now belongs to the Fire, and is therefore common to them both. Now this, whatever it be, that fublifs under thefe two Forms, we call Matter, as others call it; fo that Matter is one of the Principles of natural Things.
2. Secondly, We apprehend alfo, that there muft necef- 2. Of Fom, farily be fomething elfe added to Matter, which makes it to be Wood and not Fire, or to be Fire and not Wood; and whatever this be, which does not caufe Matter to exif, but only to exift in that manner, we call it the Forin; and this we reckon another Principle of natural Things.
3. Arifotle obferved, that though a Thing could not be made abfolutely out of Nothing, it might however be made out of what was not that Thing. Thus a Chicken may be made out of that which is not now a Chicken; fo that the Non-exiftence of a Thing which he calls Privation, muft immediately preceed the Generation of
it: From whence he concludes, that there are three Principles of natural Things, Privation, Matter, and Form.
4. That Pri- 4. But by making Privation a Principle, the Word vation ought Principle becomes ambiguous, and quite another Meannot to be call:d a Priuciple. ing is given to it, than when we faid of Matter and Form, that the'y were the Principles of natural Things; for it is certain, that Privation is not at all a Thing, nor does it go to the Compolition of any Thing.
5. That there - 5. Befide, there is no Reafon to make a particular Myfare only tmo Frinciples, viz. A1atter and Furm.
6. That it is neciffiry
rightly to winderfand what Matter andForm are. tery of this Word Privation; for there is no Body but knows what it means; and fince it is of no ufe to explain natural Things by, we conclude, that there is but two Principles of natual Things, viz. Matter, and Form.
6. But we have not yct made any great Advances in the Knowledge of the Things of Nature: For, he is very far from underftanding the Nature of Fire, who knows only thus much, that Matter is neceffary to the Compofition of it, that is, it has fomething, we know not what, in common with other Things; and that a Form is alfo neceflary to it, that is, another Something, we know not what, which gives that particular Exiftence to the Fire; for, as was oblerved before, a Thing that is unknowin, does not becone known, by giving a Name to it; we muft therefore confider more diftinctly, what Matter and Form particularly are. We will begin with Matter, and try to find out what that is, which we call we don't know what, which is common to all the Things in Nature.

C H A P. VII.

Of Matter.

- T. The Meithod of finding out what Natier is.

sINCE there are but three Things neceffary to a perfect Underftanding of any Thing, viz. its Effence, its Properties, and its A.cidents, that we may comprehend fully what Matter is, we muit diftinctly explain what the Effence of it confilts in, what the Properties of it are, and what Accidents it is capable of; in crder to which, we have no more to do, but to examine all that we conceive any way to belong to material Things, confidered as material, that is to belong to Matter; and then exactly to diftinguifh its Effence, from its Properties, and Acciderzts.
2. Now according to this Method, if we confider, that 2 . though we do not'perfectly underftand what Hardnefs, Liquidity, Heat, Cold, Heavinefs, Lightnefs, Tafte, Smell, Sourd; Light, Colour, Tranfiparency, Opacity, and the like, are;; yet we underftand enough of them, to know, that they are none of them infeparable from Matter, that is, it may exift without any of them, (for we fee that fome material Things are wichout Hardines, fome without Liquidity, fome without Heat, and fome without Cold, and fo of the reft,) wherefore we fay, that the Effence of Matter does not conlift in any of thefe Things, but that thefe are accidental only.
3. But when we confider Matter as extended into Length, Breadih, and Tbicknefs; as baving Parts, and thofe Parts baving fome Figure, ard that they are impenetrable, we do not judge in the fame manner of thefe, nor think them mere Accidents of Matter. For, as to Extenfion, it is certain, that we cannot feparate the Idea of that, from any Matter whatfoever; becaufe if Extenfion does not go along with it, we immediately lofe the Idea of Matter, in the fame manner as the Idea of a Triangle vanifhes, if we ceafe to have in our Minds the Image of a Figure terminated by three Lines.
4. As to the Parts of Matter, we apprehend them to belong to it fo neceffarily, that we cannot imagine any Portion of it fo fmall, be it the fmalleit we can conceive, but that if it be put upon a plain Superficies, we muft think at the fame time, that it touches it in one Part, and does not touch it in another; that is, this fmall Portion of Matter, confifts of Parts.
5. With refpect to Figure, though it be nothing elfe but the Difpofition of the extreme Parts of a Body, and perhaps we cannor determine the paiticular Figure of a particular Body; it is however manifet, that we cannot conceive any Body, be it everfo great, or ever fo fmall, but at the fame time we conceive it to have fome Figure.
6. Laftly, With regard to Impersetrability, fince a certain Portion of Matter, fuppofe a cubic Foot, has all that is neceffary to fuch a Magnitude, we cannot conceive how another cubic Foot, can be added to it, without making two cubic Feet: For fuppofe any one would reduce them to one cubic Foot by Penceration, this would not be fo much reducing them to one cubic Foot, as it would be deftroying the firft Suppofition; whence we are led to think, that the Parts of Matrer are in their own Nature impenetrable.

C 4
7. Now
4. To bave Parts, is not accidental to Matter.

nut.

5. That Figure is not accidental to Matter. 3. That Extenfion is not . The ulccidents whios belong to Matter.
6. Of the Ef- 7. Now this being fo, we mult fay, that Extenfion, Difential Pro- vifibility, Figure, and Impenstrability, are, at leaft, effential perties of Alatter.
7. What the ESerace of M1atter conSjefs in.
8. In what a mattural Pbilofopher ought to ackrowledge the $E f-$ Sence and effeiztial Froferties of sarter to coñfl. Properties of Matter, becaufe. they always go along with it, and canno: be feparated from it; and thefe being all that we conccive to belong to Matter neceffarily, for we know of nothing more, we are affured, that the Effence of Mitter confiits in one of thefe.
9. And becaufe we conceive Exieryfion before the other Three, and becaufe we cannot conceive the other Three, without firit fuppoling Exterufion, ${ }^{1}$ we ought to think that Extenfion is that in which the Effence of: Matter confirts.
10. If it fhould be here obje?ted; That God could make Something to be the Effence of Matter, which neither we, nor any Man living, can underitund what it is ; we can make no other Anfwer, but only this ; that God, being Lord of all Things, might create them according to his own Will; for we do not pretend to determine by our Reafon, that which Reafon cannot come at. Wherefore leaving fuch Sort of Queftions to be treated of by thofe, who are of a higher Proieifion than that of mere natural Philofophy, and who carry their Views far beyond what Reafon can do; we fhall contain our felves within the Limits which that prefcribes, without invading the Territories of others; and conclude from that Knowledge which we have by Reafon, that the Effence of Matter confilts in Extenfion, becaufe that is what we firft perceive in it, and from which every Property of Matter is derived, and upon which it depends.
> 1. We ought to think Eivten $\sqrt{2}$ on, \&xc.) It does no more feem to follow from hence; that, becaufe we conceive Extenfion before any other Properties of Matter, and that thofe Propertics can't be concerved to exift, without firf conceiving Extenfion ; therefore Extenfion is the EIfence of Matter; than it follows from hence, that Exifince is conceived before all other Properties of Matter, and therefore Exiflenec is the Effence of Matter. But fince Extenfion is a more general Word, and comprehends more under it than material Things, it hould feem, that that impeneirable solidity which belongs to all Matter, and to Matter only, and from which ail its P ntmisi mani-
feftly flow, may be more truly called the Elence of Matter.

But further, if Extenfion were the Eflence of Matter, and fo Matter the fame as Space it fclf; it would follow, that Matter is infinite, and necenarily etarnal, and could neither have been created, nor be reduced ro nothing; which is very abfurd. Beffic, it evidently appears from Gravity, as thall be afterwards explained, and from the Mor on of Comets, and from the Vibrations of Pendulums, that Space it Self is not Matter. Wherefore not ExtenFion, but folid Extenfiou, impentetrable, which is endued with a Power of refifing, may (as was before faid) be more cruly called the Efence of Matter.
10. Further, that we may carry our Knowledge as far Io.That Ewas the Light of Nature will permit, let us conlider that $\begin{gathered}\text { tenf fion is not } \\ \mathrm{amere} \\ \text { mode }\end{gathered}$ the Idea of Extenfion is fo far from depending upon any. created Thing, that we can fcarce get it out of our Minds, when we try to imagine Nothing, which we believe was before the Creation of the World ; which fhows that it does not depend upon created Things, that it is not a Confequence nor a Property of them, much lefs is it an Accident or Mode of exifting, but a true, Subftance.
II. It is generally believed, that this is very different from the Opinion of Arifotle, becaufe he fays in his Metaphylicks, that Matter is not a Thing that can any way anfwer to Queftions which relate to Effence, Quantity, or 2yulity; and indeed, that it is not a certain determinate Thing, This the Arifotetians, for the molt part, fo interpret, that they would have us think that Matter is not at all extended, nor has any Exitence.
12. But Arifotle feems in this Place to fpeak of Matter in general ; for he exprefsly diftinguifhes between $E x$ tenfion and Quantity, as every one ought, becaufe we can conceive the one without the other. Thus, for Example, a Surveyor of Land conceives at firt Sight, that a Field is extended, but he does not know the Quantity of it, till after he has meafured it. Now in this Senfe of the Word Matter, there is no Inconfiftency in faying, that it may be extended, and yet not be any Thing that will anfwer to thofe Queftions which Arifotle there enumerates ; for thofe Queitions are to be underftood only of Matter under fome particular Form: Thus we cannot fay of Matter in general, that it is Hot or Cold, that it contains a certain Number of Feet, or that it is fuch a particular Thing, as Gold, or Wood, or Marble ; any more than we can fay of an Animal in general, that it is a Horfe, and not a Dog, or any other particular Species.
13. But be this as it will, if Ariftotle was not of this Opinion, as many of his Interpreters think he was not; we thall make no Difficulty in this Matter, to differ from him; becaufe we do not govern our felves by Authority, when we endeavour to cftablifh Things upon Reafon: And there feems to me no Reafon to fay, that Matter, which is the common Subject of all Things, has it felf no Exifence ; for there is no Difference betwixt Non-Exiftence and Nothing, or having no Properties.
14. That ExEcnfion in Lenyth, Breadth, and Thickucfs, camot be a Rods.
14. Some Arifoteclians, who may be fatisfied with this Anfwer, will perhaps find fault with me, becaufe I call Extenfion in Length, Breadth, and Thicknels, a Subftance, and not a mere Mode or Accident, as they do. Thus, for Example, when we fpeak of the Extenfion of a Table, they underftand that the Extenfion is a Mode, and the Table the Subitance of it. But it is eafy to make appear, that this is a Miftake arifing from the Manner of Speaking; and is alto, ether as grofs, as it would be, in fpeaking of the City of Rome, to imagine, that thefe were two different Things, one the Mode, and the other the Subitance. But to clear all Difficulty in this Matter, we mult obferve, that it is of the Nature of a Subftance to be able to exift without its Mode, on the other hand, The Nature of a Mode is, not to be able to exift without that Subftance of which it is the Mode. For it is evident, I that the whole Extenfion of the Table can fubfift without being a Table, but on the contrary, there can be no Table without Extenfion. Wherefore, fo far ought we to be from faying, that Extenfion is a Mode of which the Table is the Subftance, that we ought to fay, on the contrary, that Extenfion is the Subitance, and the Form of the Table the Mode.
15. Whence it is that natrural Pbilofophy bas been sitherto fo barren.
15. Laftly, They who deny Extenfion to be the Effence of Matter; cannot diftinctly tell us what they mean by Matter, nor in what its Effence confifts; and they lay down fo obfcure a Thing for a Principle, that it is impoffible to draw any Confequences from it, that can en- lighten our Minds, or ferve to clear up any Truth. Whersfore we need not be furprized, that their Philofophy is fo barren, and that it is not capable of explaining the fmalleft Effect in Nature. Let us now fee if the fame may be affirmed of the Principle which we have maintained.

[^3]farily be fome Subfance fubinting under the Form of the Table, which is it Self extended; which extended Subflance is not Extenfion it felf, but Subfits in Extenfion or extended Space.

C H A P. VIII.

Some Corollaries of the foregoing Notion:

FR OM what we have now laid down concerning the Effence of Matter, we infer in the firt place, i that what the Pbilofiphers call a Vacuum cannot poflibly be: For by a Vacuum they mean a Space void of all Matter; but by Space (or Extenfion) we mean the fame Thing as 1. That it is impojfible there flould be mhat the Philofophers call a Vacuum. Matter ; -and to ask if there can be any. Space without

1. That what Philofophers call a Vacuum, \&rc.) This it confiftently enough faid by him, who affirms the Efience of Matter to be Extenfion : But it is very evident from Gravity, (which Thall afterwards be briefly explained) that there muft not only be a Vaıum in Nature, but that it is the far greateft Part.

Befides, a Vacuum, as I faid now, is demonftrated from the Motion of Comets. For fince the Comets are carried woith a continual Motion through the Heavenly Spaces, from every Part, and all Ways, and to all Parts (in Orbits which cut the Orbits of the Planets tranfverfely every way) it is evident from thence, that the Heavenly Spaces, muft be void of any Senfible Refffance, and confequently of any Senfible Matter. Newt. Optic. p. 310. See alfo the Notes on Part II. chap. 25, 26.

This is fill further evident from the Vibrations of Pendulums, for they meet with no Refiftance in Spaces, our of which the Air is exhaufted, wherefore it is plain, there is no fenfible Matter in thofe Spaces, nor in the occult Pores of the Bodies themfelves. The Fiction of Cartes, that the Smalnefs of his fubtil Matter is the Reafon why the Reffitance is infenfible, for a fmall Body ftriking againft a large one, cannot move is in the leaft, nor hinder its Motion, but is reflected with the Whole of its own Motion; this is very weak, and contrary both to Reafon and Experience. For the famous Sir Ifaac Nepoton has demonfrated, that the Denjity of fiuid Mediums is pretty nearly in proportion to their Refiftance (Opt. p. 3 II.) and that they are very much mifta ken, who think that the Refifance of
projectile Bodies is infinitely diminifaed, by the infinite Divifion of the Parts of the Fluid; (Princip. Book II. Prop. 38. Corol. 2.) For on the contrary, it is evident, that the Refisfance can be bnt a vcry little diminifhcd, by the Divifion of the Parts of the Fluid (Ibid. Prop. 40. Corol. 3.) For, the refifing Eorces of all Fluids are very nearly as their Denfities. For why fhould not the fame Quantity of Matter, make the fame Refiftance, whether it be divided into a great many very frall Parts, or into a few large ones? Wherefore, if there were no Vacuum, it would follow, that a Body moved in Air, or in a Place out of which the Air is exhaufted, would meet with as much Difficulty, as if it were moved in Quick-filver; which is contrary to Experience, and therefore it is evident, that there is a Vacumm in Nature, and (as was faid before) it is much the greatef Part.

Since therefore the Efence of Matter does not conifit in Exterifion, but in impenetrable Solidity, we muft fay, that the whole World is made up of Solid Bodies which move in a Vacuinm. And we need not fear, that the Phænomena of Nature fhould not be fo well explained thereby; for the Explication of thofe Phroomena which feem chielly to depend upon a Plenum, viz. The Barometer, the Fhux and Reflex of the Sea, the Motions of the Stars, and of Light, thefe can be more eafily and folly explained upon other Principles (as fhall be (hown hereafter;) but as to the other Phænomena of Nature, which depend upon Caufes not fo general, the Explication of them is the fame in our Syftem as in thar of Cartes.

Matter, is the fane as to ask, if there can be any Matter without Matter, which is a manifeft Contradiction. And it fignifies nothing to fay, that we cain conceive a Space, in which we fuppofe there is no Light, Colour, Hardnefs, Heat, Weight, in a Word, in which we fuppofe there is not any one Quality that we can imagine; for when this is done, and all thefe Things denied of Extention, it is the Accidents only that are taken away from the Thing, whofe real Effence is at the fame time fuppofed.
2. What the Corsferguence wousld be, if God Shorald ammihilute the sir in a Reom.
2. And here we flall not trouble our felves to give an Anfwer to any one who thould put the following Queftion to us; Whether God could not by his Omnipotence make a Vacuum, by annihilating all the Air in a Room, and hindring any more from coming in its Place? For, as we faid befcre, it does not belong to us to determine how far the Power of God can extend it felf. But if the Queftion be a litcle altered, and we be only asked, what we conceive would follow, if God fhould annihilate all the Air in a Room, and not fuffer any other to enter in its Place? We fhould return for Anfwer, not concerning our felves with what would come to pafs without the Room, that the Walls would approach one another fo near, that there would remain no Space betwixt them.
3. That tbe Dijpofition of the Walls in mazking a Room, depend apon the Extenfion of the AIatcer that is conttained betwocin them. 3. Perhaps it may be urged by fome, that the Walls of a Room exift independent of what is contained between them, and confequently that they might continue in the State they were, without approaching one another, though what is between them were annihilated. To which I. anfiwer, that it is very true, that the Exiftence of the Walls does not depend upon what is contained between them; but the State they are in, or the Difpolition of them, in order to compofe a Room, this depends upon Extenfion, or fome Matter which is between them, and confequently, this Extenfion cannot be deftroyed with out diftroying the Difpofition which the Walls were in before, though not the Walls themfelves.
4. What is meant by Place.
4. Secondly, We are to underftand that internal Place, or the Space which any Body poffeffes, I does not at all differ from the Body it felf. And therefore when we fay a Body changes its Place, we mean its external Place, that is, with regard to the Superficies of other Bodies with whiclo it is furrounded, to the different Parts of which, it may be differently applied.

[^4]
Chap. 8. of Natural philosophy.

5. Thirdly, When a Body appears to take up more 5. Hom BoRoom than it did before, without our perceiving any Matter to be added to it, which is what we call Rarefaction, denfed we fhall conclude I that fome very fubtile Matter has entered into it, and diftended its Parts. So likewife, when a Body appears to take up lefs R.oom than it did before, without our perceiving any thing to be taken from it, which is what we call Condenfation, we fhall think that fome imperceptible Maiter is gone ouit of its Pores, and that by this means its Parts approach nearer each other. For fince Extenfion and Matter are to us the fame Thing, we cannot conceive that a Body fhould appear more or lefs extended, let the Manner be what it will, but that it mutt have more or lefs Matter.
6. And this does not hinder, but that we may fay with Ariftotle, that a rare Body is that, which has but a little Matter, and poffeffes a large Space, and a denfe Body, is that which poffefles a finall Space, and has a great deal of Matter; or which is the fame Thing, that a rarefyed Body does not acquire any new Matter, nor a condenfed Body lofe any of its own. For this imperceptible Matter which we fpeak of, ought to be confidered as a Thing that is foreign, and which coes not at all belong to the Body it enters into, or comes out of, when it is rarefyed or condenfed. Thus when Pafte is turned into Bread, it is rarefyed before, and while it is baking, yet we don't fay, becaule of this, that we have more Bread than we had Pafte; though it is vifible, that a great deal of Air is got into thofe large Spaces which we call the Ejes of the Bread; becaufe, what is thus got in, is not what we call Bread: So alfo when we prefs the Crumb of the Bread in our Hand, and bring it to a lefs Compafs, though we are fure that a great deal of Air is fqueezed out of it, yet we don't fay that there is lefs Crumb than there was before, becaufe there remains yet all that we call Crumb, and the Air which went out of it, did not belong to it.
7. What we have now faid about Rarefaction, may be thought perhaps hardly to agree with, what we experience in a Chefnut, which, when put upon the Fire, burfs with a Noife; for it may perhaps be imagined, the Fireo

[^5]that the fubtile Matrer which enters through the Pores of the Husk of the Chefnut, may come out with the fame eafe as it enters in, without breaking, or making any Noife. But this Difficulty is eafily refolved, if we confider, that it is not the foreign Matter that enters in, and comes out of the Chefnut, which is the immediate Caule of the Noife; but the more grofs Parts of the Chefnut it felf, which are torn in Pieces, and put infuch Motion, I by the fuhtile Matter which enters the Pores like fo many little Wedges, that they break the Husk with a Noife.
8. That the 8. Fourthly, We conclude, 2 that the World is indeffinite, World is ins- becaufe at how great diftance foever we fer its Bounds, it
defruit.
9. That it is impooflible that there Should be many Worlds. is impoffible for us not to imagine Extenfion to be 1till beyond. Now Extenfion and Matter, being, as was faid before, the fame Thing; we have no Notion of the World's being fo big, but we can imagine it to be ftill bigger.
9. Fifibly, It is evident, that though we can fee no Reafon why there may not be many Bodies like to our Earth, and capable of containing many Animals, as that does; yct it is impolfible 3 that there fould be many Worlds; for this, in which we are, poffeffes all that Space which we are able to conceive.
10. That the
10. Sixthly, Becaufe the Idea we have of the Extenfion Mattcr of the Heavens, and of the Bodies xpon this Earth, are of the Same Kind.
of the Heavens is the fame as that of the Extenfion of Things here below, we ought to think 4 that they are of the fame Kind; and it is no Objection againft this, to fay, that the Extenfion or Matter of the Heavens is brighter, and not fo mutable as that of Things here below, becaufe this Difference regards only the Accidents of Matter and not the E/fence of it.
known: Therefore it may very well be called indef́nite ftill.
3. That there Shorsld be many Worlds, \&cc.) It is evident, that there may be many Earths like this Globe of ours, that there may alfo be many Syftems of Stars and Planets difperfed through the vaft Immenfity of Space; but whether there be a Plenum or no, the whole Univerfe, which may properly be called the World, can of Necellity be but one. 4. That they are of the fame Kind, icc.) This is equally true, whatever be the Effence of Matter.

Chap. 8. of Natural Philosophy.

II. Laftly, We cannot affirm, that a Veffel filled with Lead i contains more Matter than if it were filled with Wax, though it be heavier; for Heavinefs is not effential to Matter, but only Extenfion, which we fuppofe to be of Matter. equal in them both.
12. That Notion alone which we have eftablifhed concerning the Effence of Matter, has been the only Principle we have made ufe of, to anfwer all the foregoing Queftions with fo much Eafe; whence there is Room to believe, that we may with the fame Eafe give a fatisfactory Anfwer to many more, if we reafon in the fame manner about any of its Properties: The firft that offers it felf is Divijulifity, which is the more copious, becauife all its Variety of rigures depend upon it.

> I. Contains more Matter, \&cc.) This is abolutely falfe, as hall be fully demonltrated afterwards, when we
 \section*{C H A P. IX.
 \section*{C H A P. IX.

 Of the Divijbility of Matter.}

 Of the Divijbility of Matter.}

WTHEN we confider a determinate Portion of Matter without Prejudice, and compare it with other Portions of Matter with which it is encompaffed, we eafily conceive that its particular Exiftence is wholly independent of thofe that are near it, and that it does not ceale to be what it is, by being joined or united to other Portions of Matter ; the firit Portion of Matter therefore is feparable from thofe with which it is united, and this fhows the Divifibility of Matter; and the Poffibility of having its Parts divided into ftill leffer Particles.
2. Indeed, when we confider the Power of God, and his abfolute Dominion over all Things that are in the World, we cannot doubt, but that he is able to make
12. That the Prepertics of Matter may make a Difcovery of many other Truttes.
11. That twa equal Bulks contain an equsl2 शantity
\qquad
\qquad certain Parts of Matter of fuch a Nature, that there is no Being in the Univerfe capable of dividing them; whence it would follow, that there Parts would not at all differ from thofe little Bodies, which Epic:rus calls Atoms : But this Property of not being capable of being divided by any external Being, is arbitrary, and not built upon any natural Principle, but only upon a mere Suppofition, which does not alter their real Nature; and therefore we may, notwithftanding this, hold it for certain, that ail Matter
is divifible. The whole Difficuiry in this Matter is, how many Parts a certain Portion of Matter can be divided into.
3. That Matter is divif2ble in all Points that can be affigned.
4. That the Number of Points affignable in Matver, is indefinite, end that Matter is indefinitcly divifible. drawn paralle to each other, and at an loch ditance, then the Line EF, which is perpendicular to them; and limited by them, will be aifo an Inch long. Then let the Point A, in the Line $A B$, be taken on the left Hand of the Line EF, and, if you will, at an Inch diftance from it ; on the Line CD to the right Hard of E F, let as many Points G,H,D, \&rc. as you pleafe be taken, and at any diftance from each other ; to which let as many ftreight Lines be drawn from A, as $A G$, $A H, A D$. Then it is evident, that the Line AG will pafs through the Point I of the Line E F, that the Line AH will pafs through the Point L which is higher, and the Line AD will pafs through the Point M which is higher ftill, and fo on; and becaufe the Line CD is indefinite, and an indefinite Number of Points, fuch as G,H,D may be taken upon it, it will follow, that Lines drawn from A to all thofe Points, will mark an indefinite Number of Points on the Line EF different from each other, and which approach nearer and nearer to the Extremity E, without any one of them ever paffing through the Point E, becaufe the Line CD is fuppofed to be parallel to $A B$. Wherefore, becaufe the Length of $\mathrm{E} F$ was takenat pleafure, and the fame Demonitration holds for any other Length whatfoever; we mult acknowledge, that an indefinite Number of Points may be affigned in any determinate Portion of Matter, and confequently that Matter is indefinitely divifible.
5. This
5. This Truth may alio be demonftrated from this Con- 5. Another fideration, that there are fome Quancities that are incom- Demmenfiratit menfurable, that is, have no common Meafure. Thus, fuppofe ABCD to be a Square, it may be geometrically, Tab. I. Fig. I^{5} demonftrated, that the Side AB , is incommenfurable to the Diagonal AC. Let us then imagine in our Minds the Line $A B$, which is an Inch long, fuppoie, to be divided into a hundred Thoufand equal Parts, and every one of thefe into a hundred Thoufand other Parts that are equal alfo, and again, every one of there into a Hundred Thoufand other Parts equal to one another ftill ; we may go on in the Divifion thus, for an Age together, without ever being able to come at Parts fo fmall, as to fay, that the Line AC contains a certain determinate Number of them and no more. Now this could not be fo, if Extenfion were not indefinitely divifible; for then afier we had divided the Line $A B$, for inftance, into as many Parts as it is poffible for Extenfion to be divided into, the Line AC would neceffarily contain 1 a certain determinate Number of thofe Parts. We muft therefore conclude, that every Thing which is extended, and every Portion of Matrer, is indefinitely divifible.
6. This Conclufion of Arifotle's, hath been affented to by all his Followers, except a very few, and they departed from it only, becaufe they thought they contradicted jection athemfelves: For, fay they, if two Bodies be fuppofed unequal, and if they can be divided indefinitely, it will follow, that the Number of Parts of which the one is compofed, is equal to the Number of Farts of which the other is compofed, and from thence it will follow, that they are both equal, which is contrary to the firt Suppofition.
7. But here is a double Mittake. Firft, they did not 7. An $\mathcal{A n n}^{2}$ confider, that Equality and Inequality are Properties of fref to this finite Things, which can be comprehended and compared together by humane Undertanding; but they cannot be applied to indefinite Quantities which humane Underftanding cannot comprehend or compare together, any more than it can a Body with a Superficies, or a Superficies with a Line. Bur, if it could be faid, that of two uncqual Bodies, divided in the foregoing Manner, as the

1. A certain determinate Number, \&rc.) For if the Line
Tab. I. ABccould be divided inco Fig. 2. thofe fmalleft Parts, the Line
AC, and all other Lines
could be divided alro inro them; fo that one of thofe frnalleft parts would be the common Meafure of the Lines $A B, A C$ and of all other Lines.

Line EF was divided, the Number of the Parts in the One, was equal to the Number of the Parts in the Other; we could not conclude from thence, I that the two Bodies themfelves were equal, becaufe the Parts of the one, are bigger in Proportion than the Parts of the other : There is therefore no Contradiction in this particular, but the foregoing Demonftration holds in its full force.
3. Another 8. Others attack the indefnite Divifibility of Matter, Objection. another way; by faying, that it would from thence follow, that a fmall Portion of Matter, fuch as a Cube, a quarter of an Inch high, might be divided into as many thin fquare Pieces, as would cover the whole Globe of the Earth, if it were much bigger than it is; which, they think, is abfurd.
9. $\bar{\sim} n \int_{\text {wicr. }}$
10. Concerning the Divifion of Gold made by Goldbaters.
9. But thefe have no more Reafon of their Side than the other; for their Objection is founded upon this fingle Maxim of their own, That every Thing is abfurd, which our Imagination can't comprehend: This is a very grofs Miftake, and unworthy of a Philofopher, who cannot but know, that there are an infinite Number of Truths, which it is certain our Comprehenfion cannot attain to. Many Examples might be given of this, but I fhall content my felf with Two, both which relate to the Subject we are now treating of, viz. The Sheets of Gold made by Goldbeaters, and the Gold Wire made by Wire-drawers.
10. In order to a clear Conception hereof, we mult firft know, that it appears by Experience, that the Weight of an equal Quantity of Gold and Water is as Ig to I, fo that if a Cubick Foot of Water weighs 7I Pounds,

[^6]only not equal in Quantity, but is really infinitely lefs, than an infinite folid Space of two Dimenfions, viz. Length and Breadth ; and an infinite folid Space of two Dimenfions, is infinitely lels than an infinite Space of all the Dimenfions. Whence, by the way, it appears, how weakly they argue, who, becaufe space (and the lame is true of Duration) may be divided into innumerable Parts which are unequal; and in infinite space (or Duration) the Number of the greateft Parts is as much infinite as that of the leait; which they think abfurd, becaulfe they believe all Infinites to Le equal in every relpect; conclude from hence, that there can. be no fuch Thing at all as Infinite Space (or Duration.)

Chap. 9. of Natural Philosophy.

1 a cubick Foot of Gold will weigh 1349 Pounds or ${ }^{2} 21584$ Ounces. 3 . Now a cubick Foot contains 2985984 Cubick Lines, and therefore 4 an Ounce of Gold contains $138 \frac{73}{1} \frac{9}{3} \frac{2}{4}$ cubick Lines. Wherefore an Ounce of Gold, reduced into the Form of a Cube, will be 5 very near $5 \frac{1}{7}$ Lines high, and its Bafe 6 about $26 \frac{22}{4} \frac{2}{9}$ quare Lines. This being fo, the next Thing to be known, is, that the Gold-beaters make out of an Ounce of Gold 2730 whole Leaves of 34 fquare Lines each, befides what they call the Wafte, which is the fmall Shreds that are cut off, and amount to almot half: The Superficies of 7 every one of thefe Leaves is 1156 Lines fquare, fo that if they were all placed regularly by one another, they would 8 make one Supericies of 3.155880 fquare Lines; to which if we add 9 but a third Part, which is the leaft that goes into Shreds, it will follow, that a Gold-beater makes out of an Ounce of Gold 4207840 fquare Lines. Now fince this Superficies ${ }^{10}$ exceeds the Bafe of a Cube of Gold of an Ounce weight 159092 times, it is certain, that That Cube, which, as was faid before, did not exceed $5^{\frac{1}{7}}$ Lines in Height, is dvided into 159092 fquare Leaves.
II. Though this Divifion of Gold be very furprizing, yet it is very far thort of what is done by Wire-drawers. I have feen feveral Ingots of Silver in the Figure of Cylinders, which weighed eight Pounds a piece; one of them, which feemed to me more regular than the reft, was two Foot and eight Inches long, and two Inches and

1. A cubic Foot of Gold, \&cc.) For 1:19: : 71: 1349.
2. Or 21584 Otances) For 16 Ounces make a French Pound. Sce Preflet. Nouvel. Elem. Mathemat. 3 . Edit. I. part. lib. 2. pag. 55.
3. Now a cubic Foot) The Proporsion between a Line and a Foot, is as I to 144 ; now in this continued geomerrical Proportion, the Number is 2985984 : Therefore becaufe Cubes are in a triplicate Ratio of their Sides, 2 cubic Line is to a cubic Foot, as 1 to 2985984, that is, a cubic Foot contains 2985984 Lines.
4. An Ounce of Gold) A cubiFoot of Gold, which weighs 21584 Ounces, contains 2935984 cubic Lines; therefore by the following Proportion, it is, 21584 Dntaces 298598」 cubic Lines:: 1 Onnce. ${ }^{1} 3^{8} \frac{7}{2} \frac{7}{3} \frac{3}{3} \frac{9}{8}$ cubic Lines.
5. Very near $5 \frac{1}{7}$ Lincs high) Fnthe Cube Root of $138 \frac{7}{2} \frac{73}{13} \frac{9}{8}+$
is very nearly $5 \frac{7}{7}$, though $5 \frac{1}{6}$ is ftill nearer, For the Cube of 56 is $137 \frac{19}{2} \frac{9}{5}$; And the Cube of $5 \frac{x}{7}$ is $136-\frac{8}{3} \frac{8}{3}$.
6. About $26 \frac{2}{4} \frac{2}{2}$ (quare Lines) For the Square of $5 \frac{1}{7}$ is pretty nearly $26 \frac{2}{4} \frac{2}{9}$.
7. Every one of the fe Leaves) For the Side of a Leaf, was faid before to be 34 - Lincs the Square of which is 1156.
8. Make one Sutperficies) Multiply 1156 the Number of fquare Lines in one Leaf, by 27.30 the Number of Leaves, and it will make 3155880 .
9. But a third Part) To which Superticies, if we add a third Part of 3155880 that is, 1051960 it will make 4.207340.
IO. Eacceds the Bafe). That is, the Superficics 420784 C , co-tains the 3afe of that Cube, or $26 \frac{12}{4} ; 159092$
nine Lines about; fo that 1 the Cylindrical Superficies was 12672 fquare Lines. After this Superficies was covered over with feveral Leaves of Gold, which all together weighed half an Ounce; the whole Cylinder was drawn through Holes made in a Plate of Steel, till it became fuch as the fmalleft Wire that is made in this City; I took 25 Fathom or 150 Foot of it, and weighed them in an exact pair of Scales, and found that they weighed but 36 Grains, wanting about $\frac{7}{64}$ of a Grain. Wherefore 2 the whole Cylinder ought to have been drawn into a Wire of 307200 Foot long: Whence it follows, 3 that it is 155200 times longer than it was before, and that its Superficies is become 4 three hundred and forty times as much. To which if we add, that when this fmall Wire is made into 2 thin Plate, to cover Silk with, 5 the Superficies is twice
10. The Cylindrical Superficies) For two Feet and eight Inches (that is 384 Lines) which is the Height of the Cylinder, multiplied by two Inches and nine Lines (that is 33 Lines) which is the Circumference of the Bafe, makes 12672 .
11. The whole Cylinder) Firft let the whole Cylinder (which, as was faid before, was 8 pounds) be redused into Grains

Then by the follort ing Proportion; 36 Grain : 150 Feet : : 73728 Grains: 307,00 Icrt.
3. That it is 155200 tim:es longer) For multiply 2 Feet and eight Inches (which is the Length of the Cylinder) or 32 Inches by 115200 , and it will make $3686+00$ Inclies, that is, 307200 Feet (the Length of the Whole Wire.)
4. Three lundred and forty times as wu,b) Let the v bole Cylinder of Sil-
ver which is to be drawn into Wire, be called A , and fuppofe another Cy linder B of an equal Bafe, but 115200 times higher, and let the Cylinder of Wire be called C. It is manifeft that the Superficies of the Cylinder B, and the Superficies of the Cylinder A, are to one another as 115200 to 1 , that is, as the Height of the Cylinder B to the Height of the Cylinder A, that is, as the Bafe of the Cylinder A , to the Bafe of the Cylinder B (for the Bafes of equal Cylinders are reciprocally as theirHeights) that is, as the Bafe of the Cylinder B, to the Eafe of the Cylinder C. Now if we fuppofe, according to Cazallerius's Doetrine of Indivifibles, that the Superficies of Cylinders confift of an infinite Number of Circumferences of Circles equal to the Bafes, then the Superficies of the Cylinder B, will be to the Superticies of the Cylinder C, as the Circumferences, or as the Radius's of their Bafes; now the Radilis's are to one anocher in a fubduplicate Ratio of the Area's of the Circles: If therefore the Supericies of the Cylinder B, be fuppofed 115200 , the Superficies of the Cylinder C will be a mean Proportional between 115200 and I (that is, 340 very nearly) and the Supecficies of the Cylinder A will be I. 2. E. D.
5. The Superficies is twice as big) If the Cylinder be made flat, its whole Superficies is made into twa Parallelograms, which becaufe they lie one upon another, form a thin Parallelepipedon, capable of being made as thin again, which is done by

Chap. 9. of.Natural Philosophy.
as big; fo that it then is encreafed to fix hundred and eighty times as much as it was at firft, 6 and therefore contains 8616960 fquare Lines. Now after this Wire is made into fo thin a Plate, its fuperficies is ftill covered all over with Gold; fo that only half an Ounce of Gold with which the Plate is covered, is made fo thin, that its Superficies is 8616960 Square Lines. 7 Which Superficies exceeds 325795 times the Bare of a Cube of Gold of an Ounce weight, and twenty fix fquare Lines and $\frac{12}{4}{ }^{3}$ in Breadth; from whence it follows, that the Thicknefs of the Gold which the Silver Plate is covered wilh, is not
 whole Height of a Cube of Gold of an Ounce weight; fo that the Quantity of $5 \frac{1}{7}$ Lines is divided into 651590 equal Parts.
12. If we confider further, that Gold is capable of being divided atill more, if there were any Occafion for it ; and above all, if we confider that what we have now examined is done by Mers, and with Inftruments that are very grofs and dull, and that there are in Nature many Things, which are vafily more fine and fubtile; we thall clearly fee, that what exceeds our Imagination, is not therefore impolfible; and that it is not for us to prefume, as many do, to fer Bounds to the Power of God.
13. Laftly, We are carefully to obferve, that That Divifion which we make in our Minds and Imaginations, makes no Alteration at all in Matter, but that all real Divifion arifes from Motion; that is, in order for a Portion of Matter to be really divided from that to which it is united, it muft neceffarily be feparared from it. And hence it is, that Motion is fo neceffary, and the Knowledge of it fo uleful, that Arifotle fays, that he who does not underfand ivtotion well, mult neceffarily be ignorant of all natural Things.

vide 8616960 by $26 \frac{2}{4} \frac{2}{9}$ and it will make 325745
8. Of half the (Jeight) Becaufe the Gold with which the Silver Wire is covered was only half an Ounce, that is, half a Cuba of Goid of an Cunce 'Weight.

C. HAR .

Of Motion and Reft.

BECAUSE it is eafier to underftand what Motion is, by Experience, than to give a Definition of it, or to find out the Caufe, I thall here make ufe of a familiar Example, agrecd upon by all, which may ferve to explain to us the Nature of Motion.

1. What it is to be moved.
I. Suppofe a Man in a calm Day walking on Foot in a Park planted with Trees, and that at the Beginning he is obferved to be between the firft Trees in the Walk; and then between the Second, and fo to continue on walking till he comes at the End; no Body doubts but the Man thus walking moves, and that every Step he takes is a real Motion. Confider now, that the Motion of this Man is fomething new, which was not in him before; and then if we take an exact Account of what we conceive to have come to him fince he began to be moved, and reject every Thing which we certainly know is not Motion, we are fure that what remains, is, without doubt, the Thing we enquire after, and that this will fhow wherein Motion properly confifts.
2. What Mo- 2. Now becaufe we do not acknowledge a Vacuum, as Detion and Reft arc. mocritus and Epicurus did, therefore we cannot fay with them, that this Man which we are fpeaking of, applies himfelf to different Parts of Space, becaufe we do not diftinguifh Space from Matter as they did; wherefore in the Example now mentioned, there are three Things to be confidered by us. Firit, The Defire of Walking in the Man: Secondly, The Effort he makes to put this Defire in Execution: And Thirdly, The Correfpondence, or the fuccefive Application of the external Parts of this Man, to the different Parts of the Bodies which encompafs him, and immediately touch him. Now it is evident, that the Defire which this Man has, is not the Motion of him; for Defire is nothing but Thought, and we acknowledge many Things to be moved, which we do not allow to have any Thought. So likewife we ought not to think, that the Motion of the Man confifts in the Effort which he makes towards \dot{W} alking: For though we may truly fay, that all Bodies which move, have an Effort, (as we know they fometimes have, though they do not move) yet we are rather to think, that this Effort is

Chap. io. of Natural Philosophy:
the ciale of the Motion, and not the Morion it felf. Nothing therefore remains but that Motion conffiss in 1 the fiucceffive Application of a Body to the different Parts of tbofe Bodies which are inmmediately about it; whence it follows alfo, that the Reifi of a Body, is the contimual Application of that Body to the fame Parts of thofe Bodies which are about it and inmmediately touch it.

1. Succeffive Application of a Bo$d y, \& i c$.) The Difpute about the Nature and Definition of Motion, amonglt the Writers of Philofophy, has always been very perplexed. I fuppore, becaufe, not furficiently atrending to the different S enfes of an ambiguous Word, they endeavoured to comprehend that in one Definition, which ought to have been very exactly diftinguilhed into its different Parts. That Motion (or rather the Effect of Motion) in general, is a Tranflation of a Boa'y from one Place to arother, is pretty well agreed amongft them all. But what is meant by being tranflated from one place to Arother, here the Controverfy lies, and Philofophers differ widely. They who define Motion by comparing theThing which is moved, not with the Bodies that encompais it, but oriy with Space which is im. moveable and infinite, can never know or underfiand, whether any Body at all relts, nor what the abfolute Celerity of thofe Bodies that are moved is ; for befides, that this whole Globe of the Earth revolves about the Sun, it can never be known whether or no the Center of this whole Syftem, in which all the Bodies relating to us is contained, refts, or is moved uniformly in a ftreight Line. Again, they who define ivotion, by comparing the Thing which is moved, not with infnite Space, but with other Bodies, and thofe at a very great Diftance, thefe neceffarily make fome Body the Mark by which all Motion is to be meafured, which, wherher it felt is at reft, or, with refpect to Bodies at a ftill greater diitance, is moved, is impoffible to be known likewife. Laftly, They who defire Motion by comparing the Thing which they fay is moved, not with diftant Bodies, but only with that Superficies which immediately touches it; it is very weak in them to fay, that thofe Things are truly at reft, which being connefted with
the Particles of other Bodies, are moved with the greateft Swiftnefs; as the Globe of the Earth which is incompaffed with Air, and revolves about the Sun. And on the contrary, that they only can be faid to be moved, that with the utmof Force, and Refiftance which they can make, can do no more than barely hinder themfelves from being carried along 'with other Bodies, as Fifhes which ftrive againft the Stream.

But if we righcly diftinguifh the different Senfes of the ambigunus Word, this whole Milt vill immediately vanifh. For a Thing in Motion, may be confidered in three Refpefis, by comparing it with the Parts of infinite and immovcable Space, or with Bodies that furround it at a dijfance, or with that Superfuies nubich immediatcly touthes it. If thefe three Confiderations be exactly diftinguifhed into their feveral Parts, all furure Difputes about Motion will be very ealy. Firft, then, a Thing in Motion may be compared with the Parts of Space: And, becaufe the Parts of Space are infinite and immoveable, and cannot undergo any Change like Matcer, therefore that Change of Situation, which is made with refpect to the Parts of Space, witbout any regard had to the Bodies which encompafs it, may rightly be called, abfolutely and, truly proper Motion. Secondly, a Thing in Motion may be compared with diftent Bodies, and becaufe a Body may in this manner be transferred along with other Bodies which immediately furround it, therefore that Change of Situation which is made with refpect to thofe Bodies which are at a diftance, and not to thofe whicla are near, may properly be called, relatively commors Motion. Laftly, a Thing in Motion, may be compared with the Superficies of thofe Bodies whlch immediately touch it: And becaufe, whatfoever is thus moved, may polibly have no abfolute
3. In order to determine zohether aBody be in Ma_{0} tion or in , therc is no need of comparing it witb Bodies at a diffoulce.
3. It is to be oblerved here, that when we fpeak of Motion or Relt, we always mean an immediate Application, and have no Regard to the Relation a Body ftands in to Things at a diftance, any further than to confider fuch fort of Relation as a mere external Denomination only, which makes no Alteration in the Thing, and which
or common Motion at all (as if an Arrow were fot towards the Weft, with the fame Swiftnefs, that the Earth turns towards the Eaf; ;) and on the contrary, that which in th's refpect is at reft, may really be transferred with both abjohte and commion Motion (as Budies hid in the Bowels of the Earth) therefore thar Change of Situation which is made with refpect to thofe superficies, which inmediately touch the Thing moved, may rightly be called Motion relativcly proper.

Firft, Abjolutely and truly proper Motion, is the Appliation of a Body, so the different parts of infinite and immoverble Space. And this is indeed alone abfolute and proper Motion, which is always generated and changed by the Forces imprefled up on the Body that is moved, and by them only; and to which alone are owing the real rorces of all Bodies to move other Bodies by their impulfe, and to which they are in proportion (Sce Newt. Princip. Book I. Def. 2,--8.) But this only true $\grave{1} 0$ tion cannot be found out or determined by us, nor can wediftiriquifh, when two Bodies any way ftrike againft each other, which the true Motion, and confequently the true Force from whence that Impulfe arifes, belongs to ; whether to that which feems to us to move fwiftert, or to that which moves noweft, or perhaps feems to be quite at reft; becaufe it cannot be demonftrace? whether the Center of Gravity, as was faid before, or of the ti hole Syftem (which we may properly enough define to be, One Point in Infinie Space) be at reft or no.
Secondly, Moticn relatively common is the Chrimge of Situation wholich is made mith reffec?, not to thofe Bodies wohich are neareft, but to fome that are at a difiance. And this fort of Motion we mean, when we fiy, that Men, and Trces, and the Globe of the Earth it feif revolve about the Sun: find we mean this Motion alfo,
when we confider the Quantity of Motion, or the sorce of a Body in Motion to frike againit any Thing. For Example, when a Ball of Wood, ith a piece of Lead in it to make it heavy, is thrown out of our Hand, we commonly recton the Quantity of Motion, or the Lorce with which the Ball frikes. from the Celerity of the Ball, and the Weight of the included Lead togerther. I fay we commenly reckon it fo, and indeed truly, with refpect to the Force it felf, or any fenfible Effect of it; but whether that Force or true Motion be really in the Ball that ftrikes, or in the Earth which feems to be Itruck, this, as was fuid before, we cannot certainly determinc.

Lafly, Motion relatively proper, is the futcieflive Application of a Body to the different Parts of Bodics which immediately touch it. And this is the Motion we generally mean in Philofophical Difpures, where we enquire into the Nature of part:cular Ithings, as when we fay, that lieat, or sound, or Liquidnefs, confif in Motion. But particular Notice ought to be taken, that the fucceefive Appli-cation of a Body is fo to be underItond, that it is to be applied fuc:effively to the different Parts of the Iodies immediately tonching it, with its whole Superficies taken together (par tout ce gu'il a d'cxtcrienir, as the French exprefles it ;) as when a Ball that is thrown, glides againft the different Parts of the Air with its whole Superficies; and when our liand is moved up and down, it is fucceffively appilied with its whole Superficies, to the different Parts of the Air on the one Side, and of the Joint by which it is faftned to the Body on the other Side. It was to no purpofe therefore for Mr. Le Clerc to find fault with this Definition, in his Phyf. lib. 5. Chat. 5. It will follow, fays he, that the Banks and the Chainel of the River are as mutch moved as the Water, becante they are as far removed from the the Man whom we fuppofe walking amongit the Trees, may always keep at the fame diftance from the fame Parts of the Water that runs in a Canal juft by, and yet we don't fay that he is at reff; and another Perfon firting in the Walk, may be againft different Parts of the Water, and yet we don't fay that he is in Motion. Whence it follows, that they are very much miftaken, who, in order to determine whether a Body be at Reft, or in Motion, compare it with immoveable Parts which they in:agine to be beyond

Watcr that runs by, as the Water is from the other Parts of the Channel and Bunks. But the Cafe of the Water is very different from that of the Banks. The whole Superficies of the Water is fucceffively applied to different Parts of the Bodies which furround it, and immediately touch it , and therefore is transferred from fome of thofe furrounding Bodies to others. But the Banks are partly fixed to the Earth, and therefore are not rransferred from thofe Bodies which imnediately. furround them. For when we fay, that a Body is transferred, we mean that the Whole of it is transferred. Wherefore an Ifland fticking up in the middle of a River, is not moved (not fo much as with this mere relative Motion) tho ${ }^{\circ}$ the Water nides by it, becaufe it is firmly fixed in the Earth, and is not transferred from that which immediately touches it. So a Body equaliy poifed in a Liquor whofe Parts run upon it with equal Force, is not moved; becaufe though every particular Part of the Superficies of it be every Moment applied to different Parts of the Liquid that furrounds it, yet the whole Superficies of it is not transferred at once from the concave Superficies of the Parts which furround it, confidered as one whole Superficies.

Further, according to thefe different Definitions of Motion, are we to underfand the Word Place in different Senfes. For when we fpeak of traily or absolutely proper Motion (or Reff;) then by Place we mean, that Part of infinite and immoveable Stace whic b the Borty poffeffes; when we fpeak of Motion relatively commorh, then by Place is meant, a Part of Some particular Space or meveable Dimenfion which Place it felf is
truly and properly moved, along with that which is placed in it: And when we โpeak of Motion relatively proper (which indeed is very improper) then by Place, is meant the Superficies of tbe Bodies (or Senfible Spaces) which immediately firround the Thing moved.

As to the Detinition of Reft, all are very well agreed in it: But whether Reft be a mere privation of Motion, or any Thing pofitive, this is Tharply difputed. Cartes and fome others contend, that That which is at reft, has fome kind of Force, by which it continues at Reft, and whereby it refifts every Thing that would change its State; and that Motion may as well be called a Ceflation of Reft, as Reft is a Ceflation of Motion. Malebranch in his Enquiry after Truth, Book 6. Chap.9. and others contend on the contrary, that Reft is a mere privation of Motion; their Arguments may be feen briefly explained in Mr. Lic Cleri's Phyf. Book 5. Chap. 5. One Thing only I would obferve by the way, relating to this Matter, and that is, that Malebranch and Mr. Le Clere, who follows his Opinion, in the following Argument, beg the Queftion. Suppofe, fay they, a Ball at reft; fuppole that God hould ceafe to will any Thing concerning it: what would be the Confequence? It would be at reft ftill. Suppofe is be in Motion; and that God mould ceafe to will that it frould be in Mution, what would follow then? It would not be in Motion any longer. Why not? Becaufe the Force, whereby the Body in Motion continued in the Srate it was, is she onfitivaWill of God, but that whereby it is at Reft is only privative: This is a manifeft berging of the Quaftion. In reality, the Furcc orTendency by whichBodies, whe-
beyond the Heavens, where it is very uncertain, whether there be any Parts of Matter more immoveable than thofe near us.
4. Aremarkaible Infance of a Body in mzotion and of azother Body at Reft.
5. That to re=
5. That to re-
fift Some fort of Motion, is 10 move tospards the contrary part.
4. Having thus explained the Nature of Motion and Reft; when we fee a Fill in the River keeping it felf for fome time right, againt the fame Part of the Bank, and neither the Stream which furrounds it, carrying it downward, nor its own Force, by which it ftrives againft the Stream, carrying it upward, we fay that it is really ina Motion, becaule it really agrees in every particular, with another in a Pond, which is by all allowed to be in Motion; for the Effort of the Former, makes it to be fuccelfively applied to the different Parts of the Running Stream, in the fame manner, as tine Effort of the Latter, makes it to be applied to diffcrent Parts of the Water in the Pond. On the contrary, winen we fee a Stake floating on the Water, and carried along with the Stream, we fay that it is at Reft, becaufe it is incompaffed with the fame Parts (which is the general Reafon why we fay a Body is at Reft) though at the fame time, the Stake and the River together, are but one Thing in Motion. now defcribed, is not carried along with the Stream, we are ufed to fay, that it refifs the Stream; fo when a-Body by its Refiftance, hinders it felf from being carried along with another Body with which it is entircly furrounded, we may as well fay, that it moves the contrary way.
6. Becaufe we canrot conceive any Application to
6. That Motion and Reft arc oinly
Modes of exifing, and are each of them but
Accidents of Matter. different Parts, without fuppofing a Body fo applied, fo that Motion depends neceflarily upon the Thing moved; therefore we are not to think that Motion is any real Being, but only a Mode of the Body in Motion; and fo likewifc, that Reft is only a Mode of the Body which is at Reft. Whence it follows, that Motion and Reft add nothing more to the Body in Motion or at Reft, than Figure does to a fisured Body; and fince a Body may either be moved

[^7]portion to their Denfity, that is, to the Quantity of Matter contained in them; and every Body friking upon another with a given Velocity, wherher that other be greater or lels, moves it in proportion to the Denfity or Quantity of Matter in the one, to the Denfity or Quantity of Matter in the other. only accidental to Matter.
7. Motion has always been acknowledged to be a Species of Quantity, which is meafured partly by the Length of the Line, which the Body in Motion runs; for Ex- ${ }^{2}$, mantity of ample, when a Body of a given Bigneff, fuppofe a Cubic Foot, moves a given Space, luppofe fixty Foot, we call this a determinate Quantity of Motion, and it is twice or thrice as much, if the fame Body runs $\mathbf{1 2 0}$ or $\mathbf{1 8 0}$ Fect.
8. It is alfo partly meafured I by the Quantity of Matter which moves together: For Example, If a Body of two Cubic Feet rans through a Line fixty Foot long, it has twice as much Motion, as a Body of one Cubic Foot, which runs through the fame Line: For it is evident, that we ought to reckon as much Motion, in each half of the Body of two Feet, as in the whole Body of one Foot.
9. Whence it follows maniféfly, that in order for uncqual Bodies to have equal Quantities of Motion, the Lines which they run through, ought to be in reciprocal Proportion to their Bulk. Thus, if one Body be three times as big as the other, the Line which it runs through, ought to be but a third Part of that of the other.

1o. When two Bodies hung at the Ends of a Ballance or Leaver, are to one another, in reciprocal Proportion to their Diftances from the fixed Point; they maft neceffarily, when they are moved, defcribe Lines which are to each other, in reciprocal Proportion to their Bulks. For Example; if the Body A be three times as big as the Tab.r. Fig. 3 . Body B, and thefe Bodies be fo faftned to the Ends of the Leaver $A B$, whofe Point C is fixed, that the Diftance $B C$ be three times as much as the Diftance AC, the Leaver cannot incline either to the one Side or the Other, but the Space BE along which the leffer Body is moved, will be three times as much as the Space AD along which the greater Body is moved; wherefore the Motion of the

1. By the S1:antity of Matter) That is, of the Matter which belongs properly to the Body in Motion; For, the fubtile Matter, if there be any fuch Thing, with which the fmall Pores of terreftrial Bodies are filled, is not transferred along with them, with the fame common Motion; Therefore if a Ball of Iron, and a Ball of Wood of the fame Bignefs be moved with the fame Celerity, there will be more Motion in the Ball of Iron, than in that of Wood. So likevife, if two equal leaden

Balls, the one folid, theother hollow, and empty, be moved with the fame Celerity; the folid Ball wrill hav more Motion than the hallow One, and will ftrike a Body againft which it is thrown with greater Force. And the Quantity of Matter which is properly contained in any Body is to be determined by its Weight. Wherefore the Quantity of Motion is not to be meafured by the Celerity and Bigneis, but by the Celerity and Weight of the Body in Motion; which is carefully to be oblerved.
one Body, will be exactly equal to the Motion of the Other. This being fo, there is no Reafon to think, that the Body A, with four Degrees, fuppofe, of Motion downwards, Should lift up the Body B with four Degrees of Motion, rather than the Body \mathbf{B} with four Degrees of Motion tending downwards alfo, fhouid lift up the Body A with four Degrees of Motion; wherefore we ought to think that they will be in requilibrio. I And this is the Foundation of Mechanicks.
11. The Reafoin whi Liguors ballance each other.
11. So likewife when any hesvy Liquor is contained in an inverted Siphon, whofe Tubes are wider one than the other, if we imagine the Height of the Liquor in each Tube to be divided into very many equally thin Planes; one of thefe Planes in cither Tube, cannot by finking, raife the Liquor in the other Tube, but the Sinking and the Rifing muft be in reciprocal Proportion of the Quantity of Parts which fink to thofe which rife. Thus, if
Tab.L. Fig.4. the Width of the Part AB, the larger Tube of the Siphon ABCD, be a hundred times as much as the Width of the Part C, the ftraiter Tube; and confequently, the Quantity of the Parts of the Liquor in the Plane AB, a hundred times as many as the Quantity of Parts in the Plane C ; then the Rifing or Sinking of the Parts on the Side $A B$, will be to the Rifing and Sinking of the Parts on the Side C, in a centuple reciprocal Proportion: Wherefore the Mation of all the Parts in the Tube AB is exactly equal to the Motion of all the Parts of the Tube C. So that they in the one, are no more able by finking, to raife thofe in the other, than thefe Latter are able by finking to raife the Former. Whence it follows, that if each Tube be divided into an equal Number of Planes, that is, if the Liquor be of an equal Height in them both, ${ }^{1}$ it mutt keep it felf in equilibrio, unlefs difturbed by fome external Caufe.
12. Since

[^8]Fes, is fully explained below in the Notes on the 14 th Chap. Artic. 9 :

1. It mufz keep it folf in xquilibrio) Hence it followss Tiaat all Liquors prefs zppon Bodies that are winder them, Tab. XVII. according to their per- Fig. 1. pendicular Hiight, and
not according to their Breadth. Which Paradox may alfo be demonftrated in the following Manner. Let ABCDFE be a Veffel tilled with Water: Now becaufe the Columa BF is heavier than the Column HG, it is manifeft, that if the Veffel ware open at H , the Column GH would rife till it

Chap. 10. of Natural Philosophy.

12. Since it is only the Effential Properties of any Subject, which can be deduced from the Effence of it, after it is known; it is to no Purpofe for us to endeavour to find out how Motion could be firt produced in Bodies, becaufe this is not an effential Property; we fhall not therefore ftand to argue upon this Subject: But as we own God to be the Creator of Matter, fo likewife we own him to be the firf Mover of it.

13. But

became in aquilitrio with the Column $B F$. Since therefore the CO ver which huts up the Veflel at H , hinders the Columin GH from rifing, it is evident, that the V ater ath prefles the Cover of the Veflei upwards with a Force equal to the Weight of BL, and becnute all Preflure is reciprocal, it is evident alfo, that the Water at G preffes the Bottom of the Veffel downards with the fame Force ; to which Force the Weight of the Column Git is to be added, by which means, ti.e Force of the Water preffing upoil G, will be the fame as if the Column GH were equal in height to the Column FB , that is, as it it were filled up to M. The fame may be demonftrated likewife of all the other Columns ; whence it is manife!t, that the Boitom \mathbb{E} is preffed in the fame manner, as if the Vefiel every where of equal Thicknels, were filled with Water to NO.

But the 'Truth of this Demonfration depends upon this Suppofition, that the Liquor contained in the Veffel be fuch as cannot be compreffed: as Water which cannot be compreffed. What therefore was faid of all $L i$ gu:ors, is to be underftond of fuch Ligruors, viz. that they prefs wpon Bodies that are wider them, according to their perpendicular Height, and not atcording to their Breadth.

Corol. I. If the Tube AB beftopped clofe with a Cover, and the little Tube CD be filled with Tab. I. Water up to D, the Water Fig. 4. contained in thisTube, will prefsupon the Water below in the grear Tube, and this Preflure will diffufe it relf through all the Water, ard chroft againft the Sides and Cover of the Vefel thus clofed ; and it a Hole be made in the Cover, for the Water to get out at, it will fly out thence with as much Force, as if the little Tube CD were as broad as the 'Tube AB.

Corol. 2. Iftwo Cylinders be exact$1 y$ fitted to the Tubes $A B$, C D, Weights laid upon Tab.I. them will be in aquilibrio, Fig. 4 . if they are in proportions to the Width of the Tubes. For Example, if the Tube AB be four times as wide as the Tube $C D$, one pound Weight laid upon the little Cylinder, will be equal to the Force of four Pound Weight laid upon the grear Cylinder; which Experiments may be infinitely diverfifyed.

Corol. 3. Hence it is eafic to explain that Paradox, which fo much perplexed the Famous Dr. Henry Moor, and Tab. XVII. ocher learned Men; viz. Fig. 2. why a flat round Board, fuch as a Trencher, when it is put into Water, fhould rife up immediately, though the Weight of the incumbent Water be much greater, than that under it, and yet there be no fuch Thing in sature as Lightnefs to lift it up. Let $A B C D$ be a Veffel full of Water, F a round Board immerfed in the Water. Now becaufe, from what has been already faid, the Columns of Water $\mathrm{H} b, \mathrm{H} b$, communicate all their Weight to the Column $d d$, and if the Column $d d$ fhould defcend, the Columns $\mathrm{H} b, \mathrm{H} b$ would afcend with a Celerity, proportionably greater, as they are lefs thick; whence it is evident, that thefe ought to be in aguilibrio with each other (in the fame manner as in the Siphon Tab. I. Fig.4.) if the Column $d d$ be all Water. But becaufe part of this Column is not Water, but the Board F, which is fpecifically lefs heavy than Water; therefore the equilibrizm is altered, and the Column GGdd having lefs Force (compounded of the Magnitude and Velocity) than the Columns $\mathrm{H} b, \mathrm{H} b$; it muft rife fo far, that there mult be as much of the Wood above
13. Tisat it is fufficient to allow, that God once creatca Motion.
13. But becaule it is not the Part of a Philuropher to make him working Miracles every Moment, and to have perpetual Recourfe to his Power, we fhall take it for granted, that when he created the Matter of this World, he imprelfed a certain Quantity of Motion upon the Parts of it, and that afterwards, by the common Courfe of his Providence, he hindred Things from returning into their original Notbing, and preferved always I the fame Quantity of Motion, fo that what remains for us to do, is only to enquire into other Circumftances of Motion, and to examine Second or Natural Caufes.
above the Superficies of the Water, as it exceeds in Bignefs a Quancity of Water of equal Weight. If the round Trencher F were fo exaetly fitted to the Width of the Vellel, that no Water could get between it and the Sides of the Veffel, fo as to communicate its Weight to the Water below, and by that means force the Board upwards; or if the Board touched the Eottom of the Vefiel fo clofe, that no Water could get in between it and the Bottom, then the Board would not rife at all. As I have often tried in Quickfilver, which does not wet the Board, and therefore will eafily let it go clofe to the Bottom of the Veffel.

1. The Same 2naratity of Motion) Someother Principle (befide the Inertia of Matter) was neceffary for putring Bodics into Motions and now they are in Motion, fome other Principle is neceffary for conferving the Motion. For if two Globes joined by a flender Rod, revolve about their common Cenzer of Gravity with an runiform M_{0} tion, while that Center moves on anaiformly in a right Line drawn in the Plane of the circtilar Afotion; The Sum of the Motions of the two Globes, as often as the Glabes are in the right Line defcribed by their comriont Center of Gravity, will be bigzer than the Sum of their Motions. when they are in a Line perpendicular ts that right Linc. By this Inftance, it appears, that Motion may be got or loft. By reafors of the Tenacity of Fluids, and Attrition of their Parts, and the Weaknefs of Elafticity in Solids, Motion is muech more apt to be loft than got, and is always 1 zonon the Decay. For Bodies which are either absolutely hard, or fo foft, as to be woid of Elaficity, will not rebound from one :another. Impenctrability makes them
only fop. If troo equal Bodies meet direcily in Vacuo, they woill by the Laws of Motion fup wohere they meet, and lofe all their Motion, and remain in Reft, untefs they be elaftick, and receive new Motion from their Spring. If they have fo much Elafricity as fuffices to make them rebound, with a guarter, or half, or three gruarters of the Force with which they come together, they woill lofe three Lguarters, or Half, or a quarter of their Motion. 'And this may be tried, by letting troo equal Peridutzins fall againft one another from: equal Heights. If the Pendutlums be of Lead or foft Clay, they will Lofe all, or almoft all theirMotions: If of claftick Bodies, they will lofe all but what they recover from their Elaficity. Newton's Opticks the 2d Edition, in Englifh, p. 37.3°

If it be asked how Motion, which is thus perpetually loft, fhould be perpetually regained. The Anfwer is; That it is regained by certain active Principles, fuch as are the Caufe of Gravity, by which Planets and Commets keep their Motions in their Orbs; and Bodies acquire great Motion in falling. The Caufe of Fermentation, by which the Heart and Blood of Animals are kept in perpetual Motion and Heat; the inmard Parts of the Earith are conftantly warmed, and ine fume Places grow very hot. Bodies burn and fhine; Mormtains take Fire, the Caverns of the Earth are blomusp; and the Sun continues violently hot and lucid, and warms all Things by bis Light; (and the Caufe of Elaficity whereby Bodies reftore themfelves to their former Figures; all which Caufes thall be treated of in their proper Places) For wee moet with very little Motion in the VVorld, befides what is owing to thefe activa Principles. Ibid. p. 375 .

C H A P. XI.

Of the Continuation and CefJation of Motion:

HOW it comes to pars that a Body in Motion, fhould continue to be moved, is one of the molt confiderable Queftions relating to Motion, and has very much perplexed the Skill of Philofophers; but upon our Principles, it is not difficult to account for it: For, as was before obferved, nothing tends to the Deftruction of it felf, and it is one of the Laws of Nature, that all Things will continue in the State they once are unlefs any external Caufe interpofes; thus that which exifts to Day, will endeavour, as far as it can, to exift always; and on the contrary, that which has no Exiftence, will endeavour, if I may fo fpeak, never to exift ; for it never will exilt of it felf, if it be not produced by fome external Caufe : So alfo, that which is now a Square, will, as far as is -in irs Power, always continue a Square. And as that which is at Reft, will never of it felf begin to move, unlefs fomething move it; fo that which is once in Motion, will never of it felf ceafe to move, unlefs it meets with fomething that retards or ftops its Motion. And this is the true Reaion why a Stone continues to move after it is out of the Fiand of him that throws it,
2. We flal! therefore have but little regard to that common Sayin of Arifotle's, That every Thing in Motion tends to Reff, becaufe there is no good Reafon for it. For if this Opinion feems to have fome Foundation from what we experience on the one Hand of the Things on the Earth, where a Stone or any other Body in Motion does not contintie always to more; yet it is overthrown by what is obferved on the other Hand in the Heavens, where from the Obfervation of many thoufand Years, we find no Diminution of Motion.
3. To which we may add, that this Opinion is not fo eafily fupported, by the Experience of what is done here upon the Earth, as is imagined: For though indeed it be very cvident, that we fee the Bodies which were in Motion, ceafe to move, and to be at perfect Reft yet it is by no means evident, that they tend to this of themfelves: For no Body can ever think, that a Cannon-Ball, after it has entered three or four Foot into a Wall, has an Inclination after that to be at Reft. On the contrary, when

```
move.
```

。 ftotle's Opi
nion cann nion cannot be proved by Experiense.
we perceive that this Ball enters deeper or lefs deep, according to the Difference of the Bodies that receive the Force of it, we afcribe, with more Reafon, the Ceifation of its Motion to the greater or lefs Refiftance made by thole Bodies.
4. That the Air refifts Motion, and that the Refiftance of Bodies is the Catuf of 0 ther Budics seafing to moze.
5. That a Body in Motion, lofes fo muech of its aron Motionz as it communicates to 0 ther Bodies.
4. This Opinion was peculiar to Arifotle, and no Body would have ever come into it, if they had conlidered, that Air, though it does not refift Motion fo much as a Wall, yet it makes fome Refiftance, as we experience in a Fan moved quick; for then when they had feen a Can-non-Ball or a Stone, not always continuing to move in the Air, they would have thought, that this was caufed by the Reliftance which the Air makes to the Motion of the Ball, and that the Ball lofes as much Motion as it communicates to the Air.
5. Now in order to find out how much of its Motion a Body lofes when it ftrikes againft other Bodies, you murt remember, that we fuppofed I that God created a certain Quantity of Motion, and that by the common Courfe of his Providence, he preferves as much Motion in Matter, as he impreffed upon it at the Beginning; whence it follows, that if a Body in Motion, ftrikes directly upon another Body at Reft, and pufhes it before it, it mult neceffarily lofe as much of its own Motion, as it communicates to the other, in order for them to go on together with the fame Celerity as if the two Bodies were one common Mafs. Wherefore if a Body in Motion be three times as big as the Body at Reft, it will lofe a fourth Part of its Miotion; and inftead of running, fuppofe, a Line of four Fathom, in a given time, it will run but a Line of three Fathom, that is, it will move with a fourth Part lefs Celerity, than it did before.
6. That a Body in motion lofes lefs of its.Motion, mben it firikes againft another Body already in mosion, than when itffrikes upoon a Body at Reff.
6. If a Body in Motion, ftrikes upon another Body in Motion alfo, it will make that move fwifter; but it will not lofe fo much of its own Motion, as if this latter had been wholly at reft; becaufe all that it has to do, is only to add fome Degrees of Motion to thofe it has already, in order to make the Bodies move with the fame Celerity: One Example will make this clear. Suppofe a Body to have a certain Quantity of Motion, for inftance, twelve

1. That God created a certain 2 nantity of Motion) See above Chap. X. Art. Ij. But though Motion may be deftroyed, and hard Bodies that have no elaftick Force, when they ftrike againft each other, are
not reflected, but lofe their Motion; yet in other Cafes, Bodies perfectly hard, communicate their Motion to each other, according to thofe Laws which the Author is explaining.

Chap.if. of Natural philosophy:

Degrees, and that it ftrikes upon another which is at Reft, according to what was now faid, if the firt Body. be as big again as the other, it ought to communicate four Degrees of Motion to it, and keep eight to it felf. But if the Body which has twelve Degrees of Motion, ftrikes againft the other moving with three Degrees, it ought to increafe its Motion but two Degrees, to make it have as much as it ought to have ; becaufe this being but half ai big as the other; it will by this means have Motion e-, nough to go as fwift as the other: And therefore that Body which before kept to it felf only eight Degrees of Motion, will now keep Ten. I

1. If a Body in Motiou, be three times as big as another Body at Reft, and ftrikes againft it with thirty two Degrees of Motion, it will give it eight Degrees of its Motion, and keep Twenty four to it felf: But if the latter Body had fout Degrees of Motion before, it will give it but five Degrees, and keep Twenty Seven. By the fame way of Reafoning, it is ealy to find out other Laws of communicating Motion in Bodies that are perfectly hard. But becaufe the hardeft Bodies of all have alfo an Elaftick Force, and becaufe the Cafe of Elaftick Bodies, is different from this, and more difficult, you may find the Principal Laws by which their Motion is communicated, explained by thefe learned Perfons; Sir Chrifopher VVren, Dr. VVallis, Mr. Hugens, in his Philofophical Tranfactions, Numb. 43, and 46, and more fully by the fame Mr. Hugens in his PofthumousWorks, and by Mr. Marriot, in a whole Book wrote upon this Subject, and alfo very fully by Dr. Keil in his LeStures upon Natura! Philofophy. But this whole Matter may be comprehended in the following

PROBLEM.

The Weights and Velocities with which two Spherical Bodies, perfectly Elaftick, whofe Centers are moved in the fame ftreight Line, meet each other, being given; to find their Velocities after they have met.

In the following Computation, the Morion of Flaftick Bodies after ftriking againt each other, is fuppofed to arife from two Caufes.

I. From fimple Impulfe. By the Force of which alone, if the Bodies had no Elaftick Force, each Body after they had met, would either wholly reft, viz. if they meet each ocher with equal Motion; or they would go both on together, as if chey were united into one Body, with the fame Velocity ; and the Sum of their Motions (if they moved both the fame. Way) or the Difference of their.Motions (if they moved contrary Ways) would contiune the fame after their meetingas before.
II. From Elaftick Force. Which in Bodies perfectly Elaftick, is equal to the Force with which thcy are comprefled ; that is, when two fuch Bodies are ftruck againft each other; it is equivalent to that Motion which one of them would gain or lofe by fimple Impulfe only. This Force acts the contrary way, and therefore the Motion which is produced by it, muft be fubltracted from that Motion, which is in the Body impelling, and added to that Motion which is in the Body impelled, by the Force of fimple Impulfe only, in order to find their Velocities after RefleEtion.

This being fuppofed. Let A and B be two perfectly Elaftick Bodies, and let A either overtake B, or meer it ; Let their Velocities be a and b; Then the Motion of A will be $A a$, and the Motion ot B, will be $B b$, and the Quantity of Motion, in them both together, if they be moved the fame or contrary ways will be $\mathrm{Aa} \pm \mathrm{Bb}$, which (by the Ift $P_{0} \mathrm{f}_{\mathrm{ition}}$) will be the fame after their I mpulfe as before. Now (if they had no Elaftick Force) their commoa Velo-
7. If a Body which was moved by another, be by any Means turned out of the Way, fo that That from which it received its Motion, is left to move freely, it will continue only to move as it did after it had moved the other,
city after they had met, would be $\mathrm{Aa} \pm \mathrm{Bb}$
$\overline{A+B}$, and therefore the Motion of $A, \frac{A^{2} a+A B b}{\Lambda+D}$, and that of B, $\frac{A B a+B^{2} b}{A+B}$. Now if the Motion $A 2 a \pm \mathrm{ABb}$
$\frac{A+B}{}$, which remains in A after the Impulfe, be fubftracted from the Motion $\mathrm{A} a$, which it had at frit. there will remain the Motion $\mathrm{ABa} \mp \mathrm{ABb}$
$A+B$, which theBody A has loft by Simple Impulfe only. Now if this Motion be fubitracted from the Motion $\frac{A^{2} a \pm A B b}{\Lambda+B}$ which is in A, and added to the Motion $\frac{A B a \pm B_{2} b}{A+B}$ which is in B after their Meeting, from the firft Caufe only, the Remainder $\frac{A 2 a \pm 2 \mathrm{ABb}-\mathrm{ABa}}{A+B}$ will
(by
the 2 d Pofition) be the Motion of A, and the $S n m \frac{2 A B a \pm B a b \mp A B b}{A+B}$ will be the Motion of B, from both Caufes together, after Reflection. And by dividing feparately thefe Motions by their Bodies, we fhall have $\frac{A a \pm 2 B b-B a}{A+B}$ for the Velocity of A, and $\frac{2 A \geq \pm B b \rightleftharpoons A B}{A+B}$ for the Ve. locity of B after Reflection. Q.E.J. (See Newt. Alyebra. Pag. 91. Probl. 12.)
N. B. It may fo happen, that the Body Λ, whether it overtakes B, or meets it, may lofe all its Motion, or may be driven back the contrary to that it moved before they met.-W herefore in this Cafe the Quantity $\frac{A a+2 B h-B a}{A+b}$ by which the Velocity atcer Reflection is expreffed, will either become Nothing (the Negative and Pofitive (erms deftroying one another) or Negative. So likewife it may happen, that when the Body B meens As it may, after their

Meeting, either reft; or go on to be moved the contrary way to that Λ was moved in, before they met; and then the Quantity by which the Velocity is expreffed, will either be Nothing, or (as at firft) Negative. But it it be driven back the fame way that 1 was moved in at firft, the Quantity by which the Velocity is expreffed, will be pofitive. For fince the Velocity that way which A was at firft moved in, is expreffed by the Sign + ; 'tis evident, that the Velocity the contrary way, ought to be exprefied by the contrary Sign - throughout the whole Computation.

From thefe general Quantities now found, by which the Velocities of the Bodies A and B are exprefled, it is eafy to deduce the Laws of Motion which are obferved by any perfeetly Elaftick Bodies after Reflection, in any given Cafe whatfover. For Example.
I. If the Velocities of two Bodies meeting each other, be reciprocally as their Weights, in this Cafe it will be $\mathrm{Aa}=\mathrm{Bb}$, and therefore the Quantity by which the Velocity of A is expreffed $=\frac{-A_{a}-B_{a}}{A+B}=-a$; and that of $B,=\frac{A b+B b}{A+B}=b$. That is, each Body after their Impulfe, will go back with the fame Velocity. with which they met eaeh other.
2. If A frikes againft B, when it is at reft, the Velocity of A will be (the Quanuity B , and confequently its Multiples $B b$, \& σc. vanifhing) $=$ $\frac{A a-B a}{A+B}$, and the Velocity of B will be $=\frac{2 A a}{A+B}$. That is, as the Sumt of their Bodies is to their Difference; fo is the Velocity of the Body A before Reflection, to its Velocity after Reffection. And as the Sum of the Bodies, to double the impelling Body, fo is the Velocity of A before Reflection, to the Velocity of B after Reflection.

Chap. II: of Natural Philosophy:

and not as it moved before it communicated any of itz Motion; becaufe the Manner in which any Thing ought to continue to exift, and to preferve it felf, is that which it has this very Moment, and not that which it had fome E 2 Time
3. If A be equal to B , and frikes againft it when it is at Keft, the Velucity of A will be $=0$. And the Velocity of B will be $=\mathrm{a}$. Which Shows that the Body Λ after ftriking, will be at Reft, and the Body B will be moved with the fame Celerity after the Impulfe, that Λ was mo ved with before the Impulfe.
4. If A and B. be equal, and meet each other with unequal Velocity, the V elocity of A after meering will be $=-\mathrm{b}$; and the Velocity of $\mathrm{B}=\mathrm{a}$. That is, each of them will return back after meeting, having changed their Velocity.
5. If A and B be equal, and A overtakes B, the Velocity of A will be $\Rightarrow b$, and the Velocity of $B=a$. That is, they will both move the fame way they did before, having changed their Velocity.

LEMMA.

If there be three unequal Quantities A, B, C; and Λ be lefs than B, and B lefs than C. I fay, (1.) that $B+\frac{\Lambda C}{B}$ is lefs than $A+C(2$.$) that$ $B+\frac{A C}{B}$ is leaft of all, when B is a mean proportional between Λ and C.

DEMONST.

The firft part is evident from Prop. 25. Book 5. of Euclid. The Second Part may be demonftrated thus. Let M be a mean proportional between A and C : then $M^{z}=A C$. Now if M and B be equal, it is $B-$ $\frac{A C}{B}=2 M$ or $2 B$, But if there be any difference between M and B, let that Difference be D; and it will be $M \pm D+\frac{M^{i}}{M \pm D}=B+\frac{A C}{B}$.
But $M \pm D+\frac{M^{2}}{M \pm D}$ is greater than之 M as is evident by multiplying ach of them by $M+D$ and com-
paring their Products together. Theretore, éc. Q. E. D.
(6.) Let there be three Elaftick Bodies, as mentioned in the Lemma, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and let A frike againft B at reft, and after that, let 13 ftrike againft C at reft alfo'; I fay, that by this Means, the llody C will acquire greater Velocity, than if it had been ftruck immediately by A alone, without the Interpofition of B; and that it then acquires the greateft Velocity, when B is a mean Proportional between A and C. (And the fame holds true, if the Motion begins with the Body C.)

For by the Second Law, explained above, the Velocity of \mathcal{C}, if it were impelled by A only, and the Body B not between them, will be $\frac{2 A a}{A+C}$ or $\frac{4 \Lambda a}{2 A+2 C}$. And by the fame Law, the Velocity of C , when ftruck by the Body B with that Motion which was given it by A will be
$\frac{A a}{A+C+B+\frac{A C}{B}}$, which two
Fractions, becaufe they have the fame common Numerator (4 A a) are to one another as their Denominators; invertely. Wherefore theV elocity of C in the firft Cafe, is to its Velocity in the Second, as $\Lambda+C+B+$ $\frac{A C}{B}$ to $2 A+2 C$. But (by the Lemma) $\mathrm{B}+\frac{\mathrm{A} \mathrm{C}}{\mathrm{B}}$ is lels than $A+C$, and leaft of all when A, B, and C are in continual Proportion. Therefore $A+C+B+\frac{A C}{B}$
is leis than $2 A+2 C$. That is, the Velocity of C , in the firft Cafe, is lefs than its Velocicy in the Second, and this Inequality is greateft, when A, B and C , are in cominual Proportion. If the Motion begins at the Body C , then if c reprefents irs Ce lerity, and be fubftitured in the Roons of a, the Demonftration will be the fame.
7.The

Time before, but has not now. Wherefore a Body which has loft fome of its Motion, by meeting Another, may lofe more of it Dy a fecond Meeting, or a Third, and fo on, 'till at laft it may be quite ftopped, as we often fee.
8.That greater Bodies continue to move longer thanleffer ones.
8. From what has been faid, it follows firft, that if two like and unequal Bodies, be moved in a ftreight Line with the fame Celerity, I the greater Body ought to move longer than the leffer, becaufe, the Quantity of Motion in each of thefe Bodies, is in proportion to their Maffes, but they communicate and lofe their Motion in proportion to their Superficies only, with which they ftrike againft other Bodies, amongft which they are moved; now though the bigger Body has more Superficies than the Leffer, yet it has not fo much in proportion to its Bulk, and confequently it does not lofe every Moment fo much of its Motion as the leffer one does.
9. An $E x-$ ample.
dy A to be a Cube two Foot every Way, and the Body Tab.I. Fig. 5 . B, a Cube of one Foot; which being fuppofed, the Superficies of the Body A will be four times as much as the Superficies of the Body B, but the Mafs of it, will be eight times as big: And confequently, if thefe Bodies move with the fame Celerity, the Body A witl have eight times
7. The more Bodies there are of a different Magnitude, between any two Bodies, fo much the greater will the Velocity of the Laft be: And it will be the greateft of all, if the Bodies be in a continued Proportion. This eafily follows from the preceeding Article.

8: Perfectly elaftick Bodies recede from each other after Reflection, with the fame relative Velocity, that they approached each orher with before Reflection; that is, in any given Time, the Diftance between the two Bodies before, and after their meeting, will be the fame, at the End of that time. For the diffance of the Bodies in any given time, before they meet, may be expreffed by \boldsymbol{a} ㄱ: viz. the fame Quantities by which the Difference of their Velocities, if they be moved the fame way, or the Sum of their Velocities if they be moved different Ways, is reprefented: Alfo the Spaces which they defcribe feparately, in a given Time, after Reflection, may be exprefled by the fame Quantities, by which their Celeriries are exprefled; wherefore, if from
the Quantity $\frac{2 A a+B b+A b}{A+B}$ which expreffes the Space run through by the Body B after meeting, the fame way that A moved before meering, be fubitracted $\frac{A a \pm 2 B b-A b}{A+B}$ which expreffes the Space run through by the Body A in the fame time, and the fame way; the Remainder $\frac{\mathrm{Aa} \text { 午 } \mathrm{Ab}+\mathrm{Ba}+\mathrm{Fb}}{\mathrm{A}+\mathrm{B}}$ $=a \mp b$, will give the Diftance of the two Bodies at the End of the given Time after Reflection.
And by the like Reafoning other Laws may be found.

1. The greater Body ougbt to move longer) It is to be oblerved, that this is faid of Similar, that is, homogeneous Bodies. Otherwife we are to undeftand by it, not the Greateft, but the heavieft Body: For the Motion of Bodies that have the fame Celerity, is not as the Maffes of thofe Bo dies, but as the Weights of them. See the Notes Chap. Xr. Art. 8.
as much Motion as the Body B; fo that it ought to lofe eight times as much every Moment, in order for them to ceafe together. But this cannot be, becaufe the Body A, having but four times as much Superficies as the other, can meet with but four times as many Bodies, and not with eight times as many; wherefore the Body A will move pretty quick, when the Body B will have no Motion at all, as is confirmed by Experience; for if a Bullet and a fmall Shot come at the fame time out of a Gun, the Bullet will be carried valtiy further than the fmall Shot.
2. Secondly, Hence it follows alfo, That a long Body, fuch as an Arrow, will continue to move longer, when it is Shot lengthwife, than it would do if it went crofswife, for it meets with fewer Bodies to transfer its Motion to, and therefore it keeps the more to it felf.
3. Tbirdly, If a Body moves almoft wholly within it felf, 10 as to transfer very little of its Motion to the Bodies that furround it, it ougbt to continue moving longeft of all: Thus we find by experience, that a fmooth well polifhed Brafs Ball, of half a Foot Diameter, fupported by two Pivots, will, with a fmall Stroke continue to run round for three or four Hours.
4. But becaufe a Body cannot fo transfer its Motion to another as not to partake with that Body to which it is transferred, but will retain fome to it felf, though it be never fo little; therefore it fhould feem that a Body once in Motion, r fhould never afterwards be entirely at reft, which is contrary to Experience. But we ought to confider, that two Bodies which have but very little Motion, may be fo connected and adjufted to each other, as to be in a manner at Reft, which is all that Experience fhows us.
5. Becaufe the World is full, a Body moving in a ftreight Line, muft of neceffity pufh another, and that a Third, but it ought not to go on thus infinitely; for fome of thofe which are thus pufhed, will be forced to turn out of the Way, in order to take the Place of that which was firft moved, that being the only Place where they can go, and which is free for them: Wherefore when any Body is moved, 2 a certain Quantity of Matter mult al-
> 1. Sbould never aftervards be cntirely at Reff) This is falfe, becaufe brilt upon a falfe Foundation, viz. that Motion cannot be deffroyed. See the Notes above, Chap. x. Art. 13. 2. A (ertain 2 vantity of Matter) This is for the moft part true, not
becaule the World is full, but becaufe the State of the Air, and other Fluids in which Bodies are moved, is fuch, that when any Body is moved out of its Place, thefe, by reafon of their Fluidity, immediately run into its Place.
14.That this Motion in a Circle, is the Canfe of many ferpriaing Motions.
ways neceffarily be moved in the Form of a Ring or a Circle, or fome way equivalent thereto.
6. This Truth, though it was known long ago, yet Philofophers, for want of duly attending to it, and well weighing and confidering its Confequences, have thought it impolible to account for all the Mations we fee in Na ture by Impulfe alone, which is the only way that we can conceive clearly, by which one Body moves another by puining it; and which fo naturally follows from the Impenetrability of Matter, which all the World agree in. And this is the Reafon why they introduced into their Philofophy Things, indeed very fpecious, fuch as Attraction, Sympathy, Autipathy, the Fear of a Vacuum, ©ic. but which, at the Bottom, are mere Chimera's, invented to make them appear to give a Reafon of that which they did not all underftand, and therefore ought not to be ufed in the better fort of Natural Philofophy.
7. The Obfaurity of the Words Attraction, Sympathy and Antipathy.
8. For as to 1 Attraction, Sympathy, and Antipathy, they ought not to be allowed at all, by reafon of their $\mathrm{Ob}-$
r. Attradion) Since nothing acts at a Diftance, that is, nothing can exert any Force in asting where it is not; it is evident, that Bodies (if we would fpeak properly) cannot at all move one another, but by Contact and Impulfe. Wherefore $A t$ traction and Sympathy and all occult Qualitics, which are fippoled to arife from the Specifick Forms of 'T hings are juflly to be rejected. Yet becaule, befides innumerable other Phanomena of Nature, that univerfal Gravitation of Matter, which fhall be more fully handled afterw'ards, can by no means arife fiom the mutual Impulfe of Bodies (becaute all Impulfe muft be in proportion to the Superficies, but Gravity is always in proportion to the Quantity of folid Matter, and therefore muft of Necelfity be aforibed to Come Caule that penetrates the very inward Subflance it felf of folid Matter) therefore all fuch AttraEzion, is by all means to be allowed, as is not the Action of Matter at a Diftance, but the Action of fome immaterial Caufe which perpetually moves and governs Matter by certain Laws. Have not the fruall Particles of Bodics certain Powers, Virtues or Forces, ty which they act at diftance, yot ouly zupon the Rays of Light for reflecting, refracting and inflecting dictm, bat aifo atem one another for
producing agreat fart of the Phanomona of Nature. For it is well known, that Bodies act one upon another by the Attractions of Gravity, Marnetifm and Electricity; and thefe Tufanues shew the Tenour and Corerfe of Nature, and nakke it not improbable bret that there may be more AttraEtive Powers than thefe. Howo thefe Attractions may be perjormed, I do not here confider. What I call Attraction may be performed by Impulfe (not Bodily Impulfe) or by fome other Mearis zenknown to me. I ufe that Word here, to fignify only ing general any Force by which Bodies send towards one another, whatfoover be the Canse. For we muff learss from the Plscnomena of Nature, what Bodies attract one another, and what are the Laws and Properties of the Attraction, before weie inguire the Caufje by which the Attraction is performed. The Attractions of Gravity, Magnetifn and Electricity reach to very Senfible Diftances, and So have been obferved by vilgar Eyes; and there may be others, which reach to fo fruall Diffances as bitherto efcape Obfervation ; andperhaps electrical Attraction may reach to fuch fmall Diftances. even without being excited by Friction. Newt. Opt. p. 350.

It feems to me farthbr, that thefe Particles (of Matter) have not prily

Obfcurity. That they are obfcure, is very evident; for if we take a Loaditone; for Example, It is manifeft to all the World, that to fay it has an attractive Vertue or a Syripatby with the Iron, does not at all explain the Nature or the Properties of it. .. And as to the Fear of a Va-cuum, I referve the Notion of That to the following Chapter, where we fhall compare the Reafoning of the Antients and our own together.
a vis Inertix, accompanied with fuch paffive Laws of Movion, as naturally refult from thai Force; but alfo that they are noved by cextain adtive Principles, fach as is that (Attraction which we call the Aittraction) of Gravity, and that which cautes Fermeatation, and the Cobefion of Bodies. Thefe Principles I confider not as occult Qualities fuppofed to refrylt from the Specifick Forms of Things, but as general Laws of Nature, by which the Things themfelves are formed: Their Truth appearins to us by Phenomena though their Causes be not yet difcovered. For thefe are manifof: 2 uclities, and their Canfes only are occult. And the Ariftocelians gave the Name of occult Qualities not to manifeff 2ralities, brit to fiuch Gralities culy as they fuppofed to lie bid in Bodics, and to be the unknown Causes of manifeft Effects: Suuch as wonsld be the Carye is of Gravity, and of marnetick, and electrick Attractions, and of Fermentations, if me Should fuppofe that the fe Forces or Actions arofe from 2rialities unknown to us, and uncapable of being difcovered and made manifof. Such occult Qualities put a fopp to the Inproverement of natural Philofophy, and therefore of late Years have been rejected. To tell us that every Spacies of Things is endowed woith an occult Specitick Quality by wisich it acts and produces manifeft

Effects, is to tell we nothing. But to derive two or three general Principles of Motion from Phanomena, and afterwards to tell as how the Properties and Altions of all corporeal Things follow from thofe manifefs: Principles, wooutd be a verygreat Step in Pbilofopby, thouzgh the Causes of thofe Principles were not yet difcovered: Aid therefore I firuple not to propofe the Principles of Motion a-bove-mentioned, they being of very gencral Extent, and leave their Cautjes to be found out. Id. Ibid. p. 374°
-... We have the Authority of the oldef and moft celebrated Philofophers of Greece and Phoenicia, who made a Vacuum and Atoms, and the Gravity of Atoms, the firft Principles of their Philofophy'; tacitly attribusting Gravity to Some other Car fe thars denfe Matter. Later Philofiphers banifh the Confiderations of Jiuch : Caufe out of natural Philo ophy, feigning Hypothefes for explainiug all Things mechanically, referring other Caufes to Metaphyficks. Whereas the main Bufinefs of Natural Philofophy is to argue from Phonomena withozt feigning Hypotbefes, and to deduce Carifes from Effects, till we come to the very Firft Canfe, which certainly is not Mechanical, and not orty to unfold the Mechanifm of the World, but chiefly to refolve Thefe and fuch like 2neftions, \& \& . Id. Ibid. p. 343.

C H A P. XII.

Of fuch Motions as are commonly afcribed to the Fear of a Vacuum.

1. What was eriginally meant by the Fear of a Уacuum.

THERE is no Subject more capable of Thowing us the Difference betwixt true and falfe Philofophy, or at leaft betwixt Reafoning juftly and not juftly, than this For we fee manifeitly, that the one leads us, if not to the Truth, yet to fo great an Appearance of Truth, that the Mind acquiefces in it; but the other gives us only Words, which we can form no Idea's from. For Proof of This, Let us take for inftance a Syringe, one End of which being put into the Water, and the Sucker drawn, let us hear how the Antients reafoned about it. Firft, They obferved, that there could be no Vacuum in Nature; then they. confidered; that there would be one, if the Sucker were drawn, and no Water followed; whence they concluded, that the Water ought to enter in proportion to the drawing the Sucker; and hence they faid the Water afcended, left there fhould be a Vacuum.
2. Hoo the 2. Afterwards, the Manner of the Expreffion was changSenfe of this ed, without altering the Notion, and it was faid, that the paspred. Water afcended, for fear there fhould be a Vacuum in Nature: And this Expreffion being equivocal, it was taken in a bad Senfe, and as it is cuftomary to carry Things to Extremity, the Word Fear was changed to Horrour; fo that it was affirmed, that the Water afcended, out of the Horrour which Nature had of a Vacuum, as if Nature (in the Senfe that Philofophers underftand that Word) was capable of Horrour.
3. The Fear of a Vacuium in this latter Senfe, is very ridiculous, wherefore I am apt to think that the Philofophers rook it in the former Senfe only: But which way fo ever it be underitood, it does by no means anfwer the Queftion; any more than it would, if any one fhould ask, how Wood came from very remote Parts to Paris, and it Thould be anfwered, it came out of the Fear of Cold; this is no anfwer to the Queftion, becaufe the final Caufe is alledged inftead of the efficient Caufe, which was the Thing dernanded.

Chap. 12. of Natural Philosophy.

4. However, if the Reasoning of the Antients were jut, and built upon a good Foundation, though it could not make us underfand how the Water afcends, that is, explain to us the efficient Cause of fuch Afcent; yet it Should prove, at leaft, that it ought to afcend; and it thould prove, at leaft, that it ought to afcend; and ty agree pits experience. you may fee that it is defective here also, it is to be obferved, that if the foll Reafon, why any Space is filled, is for fear there fhould be any Vacuum in Nature, and this makes the Water afcend; as this Reafon is always the fame, it will follow, that the Water ought always to ascend, fo long as the Sucker of the Syringe is drawing. be it never fo long; now Pumps being only long Syringes, they ought to raife up Water to any Height whatfoever; yet Experience flews us, that we cannot by Pumps, raife it above One and thirty Foot and a half, after which, the Water flops, and will not follow the Sucker. Whence we ought to conclude, that the fear of a Vacuum, taken in the mot favourable Sente poffible, is not at all the Caufe of the Waters afcending, fine it does not agree with Experience.
5. Having feen the Defect of the Reafoning of the Ancients, let us fee if we can fay any Thing better founded. And that I may not be guilty of the fame Fault, I Shall offer fome Particulars, which are very clear and intelligible to all the World, in order to draw forme certain and undoubted Confequences from a Foundation which cannot be contented.
6. Let us fuppofe firft, That rome Body endeavours to draw the Sucker from the Bottom of the Syringe $A B C$, the Hollow of which it exactly fits, that the whole Syringe is in the Air, and that the Hole C is open: This being fuppofed, it is evident, that the Sucker D cannot be drawn towards E, but it will puth the Air, which will puff that beyond it, 'till, as was faid above, it turns in the Lines here defcribed, or fome fuch like, in order to enter into the Place from whence the Sucker was drawn; whence it follows, that the Air was moved by a real Impulse.
7. Let us fuppofe Secondly, That the Hole at C, were flopped, and that there were no Pores either in
8. That the Reafoning drawn from the Fear of a Vacuum, does not Juffcicenty agree mit
Experience.
\qquad

 s s

 mag. .

be impofible to draw the Sucker, the leaft that can be, becaufe the World being full, the Air which ought to pufh the Sucker, would have no Place to go to.
9. The Third suspofition.
10. On the other hand, Let us fuppofe, that the Syringe thus ftopped, has Pores, though fo very fmall, as not to be perceived by our Senfes, and that amongft the Particles of the Air, there are fome fo fubtle, as to be able to enter thefe Pores. This being fuppofed, there is no Reafon why the Sucker may not be drawn, though the Hole at the Bottom of the Syringe be ftopped: For then the Suckor may make Room for it felf, by preffing the groffer parts of the Air, and by fqueezing out the fubtle Parts, which are forced to enter the Syringe.
11. That the greatc/f: Part of terrefirial Bodies have Pores, and that the Air sonififis of two Saits of Particles.
12. In order to know whether the Sucker of the Syringe can be drawn when the Hole at the lower End is ftopped; we mult firt know, whether the Syringe or the Sucker have any Pores in them or no, and after that, whether there be any Particles in the Air fubtil enough to enter in at thefe Pores: For according to one or other of thefe Suppofitions, will the Thing be poffible or not poffible. And becaufe neither of them can be determined by our Senfes or by Reafon, and there being no Contradiction in either, it mult be decided by Experience; now we find by Experience, that I if the Syringe be not too thick, we can draw the Sucker without much Difficulty; from whence it is evident, that there are Pores either in the Syringe, or in the Sucker, or rather in both of them; and that amongtt the grofs parts of the Air, there are fome fo fine, as to Eals through the Pores of moft terreftrial Bodies.
13. Another very forifitepable Experiment; and that the Air is wecighty.
14. This Experiment helps us to another very confiderable, which is, that if, after we have drawn the Sucker a little, we let it go again, it returns of it felf, and that with fuch a Force, as to ftrike againft the Bottom of the Syringe; the Reafon of which we thall fee, if we remember that a Body never begins to move of it felf, if it be not purhed by another which immediately touches it; now, if we obferve, that there is nothing but the Air, that immediately touches the Sucker, we muft think that it is the Air that caufes this fuprizing Motion; for, con-

[^9]is, fo much a Greater, and confequently fo much a heavier Column of Arr mult it fuftain. But the Au-. thor may be exculed, if he means the Bignefs of the whole Syringe.

Chap. i2. of Natural Philosophy.

fidering that the Air always contains in ir a great Quantity of the Particles of Water, and other terreftrial Bodies, which though they be feparated from each other and difperfed, yet do not lofe any of their Weight; though we do not fully underftand the particular Nature of the Air, nor in what its Weight confitts; we fhall make no Difficulty to affert, that the groffer Air is heavy, and confequently, that by its Weight, the Sucker is forced into the Syringe, from whence ir fqueezes out the fubtil Matter through thofe Pores which it felf entered in at.
II. But though the Air by its own Weight, preffes ir. That the chiefly downwards, yet this does not hinder, but that it may alfo prefs upwards, and force the Sucker of the inverted Syringe up into the Syringe; for the Column of wrefs np-
Air which anfwers to the Bottom of the Sucker, is forced upwards by the Weight of thofe Columns of Air which are on the Sides, in the fame manner as the Water which is at the Bottom of a heavy laden Boat, is preffed upwards againft the Bottom which refifts it; by the Weight of the Water which is of confiderable Height round the Sides.
12. When we once underftand this Force of the Air to prefs upwards, we fhall not at all wonder, that when we hold out our Hand flat in the Air, we do not feel the Weight of it; that is, we do not perceive our Hand preffed downwards, by the Weight of the Column of Air which is upon it: For this Column has no more Force to prefs it downwards, than the Column which is underneath has, to prefs it upwards.
13. As to the Preffure which is made all over the Body, when it is immerfed in a heavy Liquid; it is certain, that we ought not to perceive it, I though the Weight of the Liquid be very great, any more than we do the Preffure

1. Though the Weight of the Liguid be very great) The Caufe of this is excellently well explained by 70 . Alph. Borellus, de Motilus Nat. a Gravitate factis. prop. 29. ©r feq. After he had Thown, that Sand in a very ftrong Veflel, cannot any way be divided, and thar a Wedge will by no means enter into it; and alfo that Water in a Bladder, equally compreffed on all Sides, can neither be ftreightened nor bent, nor at all moved: Solikenife, fays he, in the Body of an Anvimal, there is contained sithine the Skin, Some Parts, which are bard and folid, futch as the Bones; orkers that are Joft, fruch as the Ters-
dons, Nerves, Membranes and Mufcles; and others that are Fluid, Wairy or Oily. Now the Bones in ars Animal cannot be broken or disjointcd, unilefs the incrumbent Weight preffes one way only, as it does on Porters: But if the Preffure diffrifes it felf all round, So as to prefs mp:oards and downward's, and fideways, with equal Force, \int_{0} that there be no part of the Skine but what is preffen'; then it is impofible, that any Thing floruld be feparated or put out of the Way. The fame may be Said of the Nerves and Mufles, which though they be foft, yet becanife they cons-' $f_{3}{ }^{\prime}$ of firong and tough Fibres, they ans. all Jupport one another, and refifian an-
2. Whywe sio not feel the Weitight of the incrombent Air.the Weight of dir ly its VVeight may prefs upi .

1

13. Why we do not frect the
Preflure of Preffire of the sir, and allo why Divers do not feel the Weight of tho Watcr.
of the Water, when in diving into the Sea, there are many Fathom of it over our Heads. The Reafon of which is, that before we can feel the Weight of any Body, there muft be fome Alteration made in the Difpofition of our Organs. But when the Air or Water have made all the Efforts they are capable of, to prefs or thruit inwards the external and groffer Parts of our Body, and thefe Forces are counterballanced and put in equilibrio, by the Refiftance and Effort of the Fluids and moveable Parts within us, the Action of which we are infenfible of; after this, I fay, they can do no more, and confequently the State of our Body will not be changed, nor the Difpofition of its Organs, to which they are fo uniformly applied, and with fuch equal Forces, that no one fingle Part can move outwards, to give way for any other to be thruft inwards; and therefore the Effort which they continually make to prefs us inward, is rendred ineffectual.
niverfally diffufe.d Spharical Compreffion: the fame may alfo be faid of the Blood and other Humozrs of an Animal, which are of a watry Natture; for, as it is evident, that Water cannot be condenfed, fo likewife the Humours of an Animal, contained in the Cavitics of its Veffels, though they may be bruifed by an Impulfe made from one or a few particular Places, yet they cand never bo forced out of their Veffels, or torn afunder by an zuiverfal Compreffion every Way. So long therefore as the Solid, Tendinous, or Flefhy, or Liguid Parts, do not *ndergo any Separation, Contzufion, nor are disjointed, nor their Sitssation at all changed; it is innpofible, that any Pain or Unenfinefs Should follow in the Animal, which cannot arife from any other Caufe, but Separatiog that which is one continued Thing. Wharefore when Divers, \&c.

And this is confirmed by what the famous Mr. Boyle obferved, in his Second Appendix to the Eleventh Hydrofatick Paradox, viz. that a Tadpole, an Animal whofe Flefh is very tender and foft, put into a Veffel half full of Water, fo clofed up, that the Air contained in it, being condenfed eight times as much as in its natual State, preffed upon the Water as much, as if a Column of Water of T'hree hundred Feet in Height laid upon the Animal; moved it felf notwithftanding, and fivam about very quick, and found
no Inconvenience, that could be perceived.

However, becaufe in molt Animals there is a great deal of Air, which may eafily be compreffed and condenfed ; therefore, though no particular Member is disjointed, when an Animal is immenfed very deep in Water, yet they mult all of them neceffarily be fireightned and contracted, by the equal Weight and Preflure of the incumbent Water on all Sides, as the famous Mr. Boyle Rays, happened to the Tadpole in the forementioned Experiment.

Befides, thofe Animals, whofe Lungs are fo formed as to contain a great deal of thin Air and Breath in them, though the other Parts of them be not at all hurt, yer their Breafts muft of neceffity be ftreightned and contracted, in the fame manner, as the Cork is ufually thruft into an empry Bottle, by the Weight of the Water, when it is funk very deep. Therefore Men, whofe Lungs are very large, when they dive very deep into the Sea, though they find no manner of Inconvenience in any other Part of their Bodies, yet they labour under 2 Difficulty of Breathing, and 2 Pain in their Breaft, (though they have Air enough conveyed to them to breathe.) And thus the famous Mr. Boyle tells us of a certain Diver, that when he walked at the Buttom of the Sea, the Blood Hew out at his Nofe and Eyes.

Chatp. 12: of Natural Philosophy.

14. Let, us, in the fourth Place, Suppofe the Sucker which is in the Syringe, as far as it can be thruft, to be drawn when the Hole C at the Bottom is in the Water; it fhould feem as if the Air which the Sucker that is drawn preffes upon, ought to prefs upon the Water, and make it to rife in the Syringe, becaufe it overtakes it, in the way which we fuppofed it to go, in order for it felf to enter in, if the End of the Syringe had been in the Air, and not in the Water, and that it ought to afcend as far as the Sucker is drawn. But there is no Neceflity that this fhould always happen; For haying made it appear, that both the Syringe and the Sucker are full of Pores, and that the Air is full of Matter, fubtle enough to pals through them; and alfo that the Water, by reafon of its Weight afcends with greater Difficulty; the Sucker may poffibly be drawn, ard the Water not neceffarily afcend, to fill the Syringe, becaufe it was filled before with that fubtil Matter, intermixed with the Air. However, Experience Thows us, that the Water does afcend, and that the Syringe is filled with it, and not with the fubtle Matter, at leaft to the Height of One and thirty Foot and a half, but no further. The Reafon of which is, that the Air being heavy, preffes upon the whole Superficies of the Water in which the End of the Syringe is immerfed; and when the Sucker is drawn, the Water which anfwers to the Hole in the End, not being preffed by the incumbent Air, the Weight of that which preffes upon the reft of the Surface, thrufts it up, and makes it afcend in the Syringe ; in the fame manner, as the Water in a Pail is made to afcend up a Trunk, fuch as they fhoot with, open at both Ends, and one End fixed in a Hole in a Trencher which exactly fits the whole Superficies; upon depreffing the Trencher, the Water is forced up. In like manner, the Moving of the Sucker, is the general Caufe of the Entrance of fome Matter into the Place which it leaves; but the Weight of the Air determines the particular Matter.
15. Since we find by Experience, that the Sucker of a Syringe may be drawn, when the Hole at the End is ftopped, this is fufficient to convince us, that the groffer Air is not of an infinite Weight; for if it was, it would be impoffible to draw it; which being fo, it is eafy to forefee, that the Air by its Weight cannot raife the Water in a Sy-
16. That the Water in a Syringe onght to rife but to a certain Height, and that a C_{0} lumn of Air weighs as muob as a Column of One and thirty ringe above a determinate Height; fo that if, after this Foot and a Height, we continue todraw the Sucker, the Syringe, inftead of being filled with W ater will be filled with fubtle Matter, as
was before obferved in Pumps: And fince the Water always rifes to about the Height of Thirty one Foot and a half, above the Level in which the End of the Pumps is immerfed, we ought to conclude, that a Column of Water of this Height, weighs as much as a Column of Air of equal Thicknefs, which reaches to the upper Surface where the groffer Air terminates.
17. That we ought not to perccive the Weight of the Air that is drawon into the Syringe; but we ought to perceive that of the V Vater.
18. When a Trebe filled with Water ought to empty it folf.
19. That an
inclined Tube orsght to containz more Water than and upright one.
20. If the Sucker of the Syringe flips very eafily againft the concave Surface, againft which it rubs, and if it had no Weight at all, the Air would very eafily be drawn in, becaufe there is juft as much Force to thruft it upwards, as there is Weight upon the Sucker to thruft it downwards: But if Water or any other heavy Liquor is to be railed; there muft then be as much Force ufed, as is equal to the Weight of the Liquor to be raifed; becaufe the Liquor, tending downward, bears upon the Air, which preffes againft the Bottom of the Sucker, and takes off fo much of the Force it had to make it rife.
21. There may be many Confequences drawn from what has been faid of the Syringe, which if they be agreeable to Experience, are fo many Confirmations of the Truth of our Explication. For Proof hereof, let us fuppofe, for Example, that after having filled a Tube with Water, one End of which is ftopped with the Matter with which it is made (which they call bermetically feal$e d$) and the other, with the End of one's Finger, we put the End of the Tube which is ftopped with our Finger into a Veffel of Water, and then take our Finger away; This being fuppofed, if we confider that the Air, which preffes upon the Water in the Veffel, refifts the defcent of that which is in the Tube, we fhall forefee, that if the Tube be not above One and thirty Foot and a half long, it will not empty it felf at all; but if it be longer, the Water ought to defcend till there is One and thirty Foot and a half in the Tube, and then ftop, becaufe the Air has only Force enough to counterpoife fuch a Quantity: And this is agreeable to Experience.
22. We here fuppofe, that the Tube, which is above Thirty one Foot and a half long is held uptight, and does not incline one way or the other: For if it inclines any way, then, becaufe the concave Surface of the Tube fuftains part of the Weight of the Water, for that Reafon, the Water will not have fo much Force to defcend as it has ordinatily, and fo the Air is able to fupport a greater Quantity than One and thirty Foot and a half in

Chap. I2. of Natural Philosophy.

the Tube; that is to fay, according to the Laws of Mechanicks, if the Water in the inclined Tube begins to defcend, it will ftop, when the upper Surface of it, is One and thirty Foot and a half perpendicularly above the Superficies of the Water in the Veffel; and fo we find it does.
19. And it is remarkable, that if we make ufe of Tubes of differcint thickneffes, and Veffels of different breadth, there is no difference in the Height of Water contained in the Tubes: For fince the Water which is in each Tube, poffeffes the Place of that Quantity of Air, which laid upon the fame Part of the Superficies of the Water in the Veffel; it cannot but be in equilibrio with the Air without, becaufe, it weighs juit as much as that whofe Place it poffeffes. And thus it is in ail Tubes whatfoever, the Water rifes to the fame height, which we fee by Experience in a particular Tube, that it ought to rife to ; for as thefe different Columns of Water are of the fame height; if that, for Infance, which is four times as thick as another, weighs four times as much as that other ; then the Column of Air, the Place of which this grofs Column of Water poffeffes, weighs four times as much alfo.
20. Neither ought we to find any difference in the Height of the Water which is in the Tube, whether the Experiment be made in the open Air, or in a Chamber, provided there be a Window in it, or at leaft any Chink through which the Air can enter; for according to the Laws of Mechanicks, the Weight of the Air is juft the fame, whether it preffes perpendicularly, or winding or oblique.
21. Neither ought there to be any Difference in this Height, if after the Experiment be made, the Room be entirely clofed up; for though the Column of Air which fupported it before, by preffing upon the Liquor in the Veffel, be now intercepted by the Ceiling, yet that part of the Column of Air which is below the Ceiling, preffes as much upon this Liquor as it did, when it bore the Weight of the Reft of the Column, becaufe the Refiftance of the Ceiling does as it were prefs upon it, and hinder it from expanding it felf.
22. It is true, that if, before the Experiment bemade, the Chamber be fo exactly thut up, that the Air within has no Communication with that without, then the Li quor contained in the Tube ought not to defcend quite fo far; becaufe as the Tube empries, and the Liquor in the Veffel rifes, the Air which is in the Chamber cannot rife in
> 19. That the $V V_{\text {ater oughb }}$ to be of equal Height in TTubes of dif: ferent Thicknefs.
20. That there will be no Alteration made in the Height of the Water, if ths Experiment be made in a Place that is Shut 动. 21. That the Height of the Water ousybs to be the fanie, though the Place in which the Experi-
nsent is made, be entirely clofed zip.
22. That the Height of the Water ought to be greater, if th Place hed been entirely clofed up before the Enperiment was madf.

Proportion: Confequently it mult be condenfed, and therefore will have force enough to futtain a little more Liquor in the Tube; but this cannot be perceived unlefs it be a very little Place in which the Experiment is made.
23. From what has been faid, it isn eafy to appre-

- $23 \cdot$ That 2rickgilver ought not to remain in the Trebe, above the Height of T'wenty \int even Inches and a half. hend, that if inftead of Water, any other Liquor that is heavier or lighter be ufed, there will remain more or lefs of it in the Tube; fo that Mercury or Quickfilver, which is about fourteen times as heavy as Water, ought not to be fuftained by the Air, but to about Seven and twenty Inches and a half, which is very near a Fourteenth Part of the Height that Water is fuftained, and the reft of the Tube, how long foever it be, ought to be filled with fubtle Matter. And this is confirmed by Experience.

24. That Experiments are more eafily made poith Quickfluct.
25. That *ere is no Vacuum in the Top of the Tube.
26. But that the Experiments may be more fenfible, the Tubes fhould be made of Glafs, becaufe that is tranfparent: And Quickfilver being fo heavy, that we are not obliged to have Tubes much longer than Twenty feven Inches and a half, their Smalnefs makes them more eafy to be managed, and to obferve a great many particulars, which it would be difficult to do in Tubes that are very long.
27. Firft then, This may give Occafion to thofe who believe the Poffibility of a Vacuum to obferve; That there is no Vacuum in the Top of the Tube, but the Place which is left by the Mercury, is filled by fome Matter, becaufe the vifible Objects behind the Tube, I affect our Eyes ftill, and are as plainly fenfible as they were before, which they could not do, if there were a Vacuum; becaufe their Action would be interrupted. And if the Eye were placed directly againft the Tube, we ought not to fee any more than in the Dark, or than if an opake Body were between; but we find it otherwife.
28. Another 26. To this we may add, that 2 Nozbing or a Vacuumz Proof. has no Properties, and that if we put the Top of the
> 1. Afect our Eyes) It don't at all follow, that there is no Vacuum in the Top of the Tube, becaufe the Space out of which the Quickfilver came, is tranfparent ; For why cannot the Rays of light, pafs through an entirely void Space? On the other Hand, they can't- poffibly pafs through a Space that is quite full: See what is faid of the Nature of Light, in its I'lace.
29. Nothing, or a Vacuym has no

Properties) It is very true indeed, that Nothing has no Properties; But how does it follow, that Space which is void of Matter, has therefore Nothing in it, or is it felf entirely Nothing. But it may be allowed that there is fome finer Matter in the Top of the Tube, or perhaps a llttle Air flipt under the Quickfilver which is rarefy'd by the Heat ; but the Space is very far from being full.

Chapı i2. of Natural Phllosophy.

Tube very near the Fire, we perceive a Rarefaction, in the fame manner, as in a Thermometer, which makes the Mercury fall, whence it toilows, that there is fome real Matter in it.
27. However it is eafy to fee that this Space is not full of common Air, for if the Tube be not quite filled with Quickfilver, but an Inch or two be left for Air, and ftop. ping the End of the Tube with our Finger, it be inverted; we obferve that the Quickfilver defcends flowly, and we have time to fee the Air afcend in the Form of Drops. Whereas let the Tube be entirely filled with Quickfilver, and immerfed in the other Quickfilver, that it may empty it felf in the ordinary way; then if the Tube be ftopped with the Finger and inverted; the Quickfilver will not fall flowly, but all at once, as if it were one hard Body, nor thall we perceive any Thing to afcend through it.
28. For a further Confirmation of this Opinion, viz. 28.The Third That when the Quickfilver defcends from the Top of the Hroof. Tube, it is not filled with common grofs Air, we may oblerve; that if the Top of the Tube be made large, in the Form of a Veffel, and fome Sort of Animals, as Birds, Rats, and Mice, be put into it, they will die, in a very fhort time; that others, fuch as Flies, feem to die, but being preferved afterwards, two or three Days in a more temperate Place they revive and fly away; and others, fuch as Worms and Frogs are preferved alive, and not hurt, unlefs they continue very long in it.
29. It may here be demanded, how the fubtil Matter, which fills the Top of the Tube, gets through: To which it may be anfivered; that it feems rather to pals through the Pores of the Glafs, than thofe of the Quickfilver, becaufe the Quickfilver being very heavy, the Pores of it feem to be rather too fmall for it to pafs through them: Though I thall be of another Opinion, if what I have heard from England be true, viz. I that a Tube of fix Foot long, will not empty it felf at all, if the QuickfilF
29. VVhat Pores the jubtil Maticr wbich is int the Top of the Tibe may pafsthrosigh.
> 1. That a Tite fix Foot long) This Experiment is thus related by the famous Dr. VVallis in his Hydrofrations, Prop. I3. If the 2 rickfilver sufpended in an inverted Tute, be very exactly cleared of all Air before it be inverted (which cannot be done bust by ereat Care and Nicene $\int s$, and if the Tube be cautioufly inverted, and fixed in a firm Place fo as not to be in the leafi Shaken; the Quickfluer (though the Orifice at the Buttorn be apert) mill remain fufpended, muab
beyonid the forementioned Height (viz. to 4050, or 60 Inches;) but if the leaft Air gets into the Quickfilver thiss fuspended, or if the Tribe be Shaken, the C 1 nick fluer will immediatcly rufh down to the ufual Height (and after fome Reciprocations,) will fland fill.

Which Experiment, having been often repeated by the Lord Brornker, the famous Mr. Boyt, Mr. Huygens and ochers, has fucceeded; fo that there is n (doubt of the certain Truth
ver with which it is filled, and that in which it is immerfed, have ftood fome time in a Place void of grofs Air: For in inquiring into the Reafon of this Phrnomenon, we can find no other but this, that the Quickfilver thus prepared, is cleared of fome Matter
of the Phænomenon; but upon what Caufes fo furprizing a Thing depends, is not fo well agreed.
The Lord Brounker thought, that the VVeight of the Air was much greater than anfwers to the Height of about 29 Inches of 2 nickflicer, but that the 2 nick liv er was depreffed to that Height, by the Sir which poas inviffbly mixed with it (implefs it was cleared of it) And after it woas cleared of $i t$, and there remained nothing to reffit the VVeight of the external Air, but only the bare weight of the Quickfilver then it roas, found to be ot berwife; and the 2 uickjilver woas fupported to a greater Height, by the Ballance of the Air. This is indeed very ingenious; but that which weakens very much this Explication, is, that upon the leaft Shaking of the Tube, the Quickfilver immediately rufhes down: which could by no means be, if it were fupported by an equal Weight of Air or Ether.

Wherefore the famous Dr. VVallis attempted the Thing another way. He imagined, that all real Gravitation, proceeded from the Preffure or Spring of the Air or Ather, wit bout phich thole inative Bodies which we call heazy, if once at reft, would remain $\int 0$, without any real gravitation, or without defiending, having no more 'Tendency to move downowards than fideracys. The Quickfilver therefore, when it is cleared of all Air from woithin, and fuspended in the aforefaid manner, when it is at reft, will continuse $f 0$, and retain its Poffions, beyond the common Height neceeffary to. an æquilibrium, bccanfe it is free from all Prellive of the Air, and is not preffed upon, either by its Gravity, or by its Spring: But if it be pust in Motion, either by any Shaking of the Trube, or by ary Motion within, from the Spring of the Air whichwas at firff left in it, or is fince got in, then it will continue the Motion downwards (that mosy being open.)

But fince it is now allowed, that Gravity does not depend upon the Air or Ether, but is an original con
nate and immutable Affection of all Matter, neither can this Explication be admitted. And indeed this very learned Perfon confeffes, that he himfelf was not fatisfied with it. Therefore he adds, That the Superficies of the Tube however well polifhed, cannot be thonght to be fo free from all Ruggednefs or Inequsality, but that there minft remain fome Roughnefs, wohich muft caufe Cohafion, or (if it be moved) Some Frittion of the adjacent Body, whereby the Motion muft be fomithing hindred.

And indeed this Opinion comes nearer the Truth; and that chiefly becaufe upon the leaft fhaking of the Tube, the Quickfilver falls down, whence it is manifeft, that the Sufpenfion does not depend upon any permanent Caufe, fuch as the Gravity of the Air or Æther, but upon fome accidental Thing, fuch as fome kind of Adhæfion. However, becaufe there does not appear to be any fuch Rouygnefs in the Superficies of the Glafs, as this learned Perfon imagines; it feems to be moft probable, that the Quickfilver remains thus fufpended from the ContalZ or Agreement of the Parts, the Force of which is always greateft in every Effect of Nature. Thus, a plain and fmooth Londfone applied to a Ball of Iron fúpended on a fring from a Nail. will draw it much further from the Perpendicular, than in proportion to the Magnetick Force, if it be pulled back with a gentle and even Hand, and be not feparated by any accidental Shake. So alfo Water will afcend in a Vacuram, in fmail Glafs Tubes open at both Ends. And two fmooth polifhed Marbles will not be feparated, though the grofier Air be removed. And fo the Parts of all bard Bodies (and in fome meafure alfo of Liquids) cobare together by Contact, that is, by that Attraction which always arifes from Contact. See what is Said below at Chap. 22. Artic. 9.

All the Author's Pains therefore about frubil Matter, and about the

Chap. 12. of Natural Philosophy.

Marter, which before kept its Parts at a Diftance, and made the Pores fufficiently wide and long, to give free Paffage to the fubtil Matter; and becaufe it cannot thruift the fubtil Matter into the Place which it is difpoled by its Weight to quit, therefore it does not defcend at all: However, not having had any Opportunity to fee how well this Experiment fucceeds, and not venturing to fay that it is falfe, we remain in furpenfe, and do not determine which Body it is, through the Pores of which the fubtil Matter paffes, to fill the Top of the Tube.
30. But to return to our Difcourfe, and to continue to draw the Confequences which we think deducible from what has been faid above; Let us fuppofe a Tube filled with Quickfilver, and immerfed as ufual in a Veffel, into which Part of the Liquid runs, 'till it is about the Height of Twenty feven Inches and a half, and then it be lifted up a little above the Surface of the Quickfilver, fo that one Drop only of it may run out; then beeaufe the Quickfilver, that remains in the Tube, does not weigh fo much as the Air without, it ought to be impelled with Violence to the Top of the Tube, and after that, its own Weight ought to make it defcend on the one hand, as much as the Air makes it afcend on the other; and fo we find it does.
31. If, after having made the Experiment as ufual, we take the Tube out of the Veffel in which it is immerfed, ftopping the lower Hole with our Finger, but not preffing very hard upon it, then we ought not to feel, nor do we indeed feel the Weight of the Quickfilver: For though it lies upon that part of the Finger, which anfwers to the Hole of the Tube, yet it is not heavy, becaufe it preffes neither more nor lefs, than the external furrounding Air, which is applied to the other Part of the Finger, preffes upon it, and repels it. And if in this Cafe, the Tube be opened at the Top, by fuddenly removing that

[^10]when it is firft cleared of all Air, cohxre by mutual Contaet, both with one another and with the Glafs, from a certain Attraction, which ceafes, as foon as the Tube is fhaken, whereby the Particles are feparated from each other, and from the Glafs. And the fame Experiment has been made in Water well cleardd alfo of Air, by which means its Parts approached nearer to Contact. See Nespt. Opticks, pag. 337.

3r. That me ought not to fect the V Veight of the Gơrickfliver that is in the Tazte.
which it is ftopped with, then we fhould feel the fame as if the Finger which is applied to the lower Hole received a hard Blow, becaule the groffer Air, which defcends quick, and with great Force into the Tube, adds on a fudden new Weight to that of the Quickfilver ; and this is confirmed by Experience.
32. VVhat ought to be the Confegucnce of filling up the Trube with any other Liquor.
 it is bent, with fo much greater Force does it unbend felf; fo the Air, the more it is compreffed, with fo much the greater Force does it dilate it felf; and in all this, our Reafoning is confirmed by Experience.
35. A very good Eaperiment of a Carp's-Bladder, to hoow how muth the Air is cafable of exipandind is jelf.

Neck, where it is joined to the Greater, prefs the greater Part fo clofe, as to fqueeze out almoft all the Air that is contained in it: Then tie it up to keep in that which remains, which is not bigger than a fmall Lentil : After this, let it be put into the Top of one of the Tubes made large like a Veffel, and filled as ufual with Quickfilver, and managed in the fame manner as the formentioned Experiments, and then we fhall fee how furprizingly the Bladder will fwell round almoft all at once, and appear to be blown as big as it was before the Air was.let out.
36. Now though there be much more fubtil Matter in the Bladder thus diftended, than grofs Air; yet we are not to think, that it is that which preffes upon the internal Parts of the Bliadder, and fwells it thus; this Effect cannot be produced by it, becaufe it can eafily return through the Pores by which it entered; it is more likely, I that this fine Matter agitates that little grofs Air which remains in the Bladder with great Violence, which Agitation is the immediate Caufe of the Bladder's fwelling: And this is fufficiendy evident; for if the Bladder be entirely emptied of the grofs Air, it will not fwell at all, and if there be a little too much, it will break.
37. In order to make this Experiment well, it fhould be done with a Tube open at both Ends, and the upper End fhould be covered with a Hog's-Bladder, moittned firt in Water, that it may ftretch the better, and this will give us opportunity of obferving ainother Circumflance very curious, and that is, that as foon as the Quickfilver begins to defcend, we flall fee the Hogs-Bladder ftretched, and forced into the Tube; the reafors of which is, that then a very heavy Column of Air preffes upon it, and there is none under it to fupport it.
38. If the Bladder be pricked with a Needle, and the Neeule be pulled out a little, to let fome of the grofs Air in,
38. Arother Citremprante. and then the Hole be ftopped; the grofs Air which enters in , will expand it feif round the Carp's-Bladder, and prefs upon it, and make it appear more or lefs wrinkled, according to the Quantity of Air let in.
39. This Experiment may ferve to undeceive thofe, 39. The Urewho upon reading Arijfotle have been of Opinion, that Sifupfriof thimis Air made ten times rarer than it is, neceefarily changes its Nature, and is converted into Fire./ For the Falfity of this Ima-

[^11]gination is clearly feen, by fhowing that the Air contained in the Carp's-Bladder is rarifyed above a hundred Times, and yet does not at all alter its Form.
40. That the Height of the Q2nickfilver is various.
41. That the greateft Cold owght rict to alter the Ficight of the Quickfiluer, and what the Carefes are, that ousht to alter it.
40. When I fpoke of the Height which the Quickfilver ftands at in the Tube, I limited it to Twenty feven Inches and a half, which is the common Height obferved at Paris; but to fpeak exactly, it is fometimes higher, and fometimes lower; becaure the Air at different times is lighter and heavier.
4. One of the beft Obfervations that I have met with upon this Subject is this: That though we know by Experience, that the Air is condenfed by Cold, yet I have never found that the greateft Cold, made any Alteration of the Height of the (uickfilver in the Tube. The Rea fon of which, in my Opinion, is, that the Cold being ve-ry-near the fame over a great Part of the Superficies of the Earth, the Air docs not pals from one Country to another fo that the Bulk or Quantity of it is increafed; but it being condenfed only from the Top to the Bottom, it is the fame Quantity of Air, that preffes upon any particular Place of the Earth; fo that all the Difference that there can arife in the Air, muft be imputed to more or lefs 1 Vapours and Exhalations, which are contained in it at different Seafons, and to the Winds which blow fometimes upwards and fometimes downwards.

Abstract

1. Vapours and Exhalations) It has been long obferved, that in clofe and rainy Weather, the Quickfilver does not rife fo high, as when it is dry and clear; which has been thought by fome to overthrow the whole Thenry of the Weight of the Air ; and inaced it is very difficult, to explàin particularly the Caufes of all the various and minute Changes of the Heavens; a great deal is ovving to the Winds, which blow fometimes upwards, fometimes downwards, and fometimes fideways, a great deal to Vapours, a great deal to Steams rifing out of the Earth ; fomething muft be afcribed to the Alteration of the Heavrns in the neighbouring Countries, and perhaps fomething to that Flowx and Refizx which the Moon caufes in the Air, which is much greater than that in the Sea, orc. 'To account for all which particularly and exactly, would be endlefs. However, to propofe fomething which may come pretty near the Truth; it is to be oblerved, that the Air it felf

is heavier than the Vapouys, and fitred to fupport them, becaufe its Particles are groffer, and arife from denfer Bodies, than the Particles of Vapours.

In the firft Place therefore, this Weight of the Air, in any particzlar Country, may be fo changed by the V Vinds, that the Atmofphere may be condenfed and made heavier, by bringing a greater Quantity of Air, and heaping it together ; viz. whenever two Winds blow at the fame time from contrary Parts of the Heavens; or fome of the Air may be carried or blown away by them, and thereby an Opportunity given to the Atmof phere to unfold it felf, the incumbent Weight being taken off, rix. as often as two Winds blow from the farne Country to oppofite Parts of the Heavens; or whenfoever any one particular Wind is very ftrong; for it is found by Experience, that an artificial ftrong Wind makes the Air lighter, and the Quickfilver in the Iube to fall very much. See
42. As to any Alteration in the Height of the Quickfilver, which may be thought to arife from the Dilatation of the fubtil Matter in the Top of the Tube, by the Heat of the Summer, or the Contraction of it by the Cold of the Winter, it cannot be at all fenfible: For Experience fhows us, that if this Matter be heated by a Fire, much more than it can be by the Heat of the Sun, it will not ther the Heat in the Summer, nor the Cold in the Winter, do at all Senfibly dilate or condense the fisb-1 tle Matter in the Trube.
the Pbilofophical Tranfactions, Numb. 292.
secondly, Cold and nitrous Particles or the Air it felf, condenfed by Cold from the North muft condenfe the Atmofphere where-ever it comes, and make it heavier.

Thirdly, Heavy and dry Exhalations make the Nir heavy (in the fame manner as the Specifick Gravity of any Menfiruum is increafed, by diffolving Salts and Metals) and its elafick Force, as it is called, mult thereby become fo much the ftronger.

Fourthly, When the Air by thefe and fuch like Caufes is become heavy, then is it more able to fupport the Vapours; which when they are entirely mixt with it, and fwim about, and are every way difperfed in it, make the Sky ferene and clear: But when the Air from the contrary Caufes, is made lighter, then is it unable to fupport the Vapours with which it is always filled, and fo being put into fome fort of violent A gitation, they gather themfelves into Clouds and Mifts, and being formed into Drops, fall down.

From thefe Obfervations, it is very evident, that the fame Caufes, which make the Air heavier, and more able to fuftain the Quickfilver in the Tube, make the Heavens alfo clear and dry; and the fame Caufes by which the Air is made lighter: and lefs able to fuftain the Quickfilver, are Showers and Rain produced alfo.

Hence it follows. Firft, That when the Air is lightelt: and the Quickfilver falls loweft in the Tube, then the Clouds move very low and quick; and that clear Air which after Rain, appears between the thick Clouds, being difcharged of its Vapours, teems moft cranfparent and bright, and gives the beft and eafieft profpect of Things at a diftance.
Secondly, When the Air is more hesvy, and the Quickfilver is raifed
higher in the Tube, then the Heavens are fair, but a little thicker, and not quite fo blue, by reafon of the Vapours which are every way equally difperfed about; and as has been by mary obferved, it does not afford fo good a Profpect of Things at a diftance ; and it there do appearany Clouds, they are very high and move very flow; and when the Ait is heavieft of all, the Earth is fometimes covered with very thick Clouds, which feem to confift of heavier fort of Exhalations, which the Air at that time is capable of fuftaining, bus which cannot fwim in lighter Air.

Thirdly, Hence it is, that in our own Country, when the Cold is greateft, and the North and orth-Eaft Winds blow, the Quickfilver in the Tube is higheft ; becaufe at that time two Winds blow together upon our Country from oppofite Parts of the Heavens; for in the Atlantick Ocean, at the fame Latitude with us, the Wind blows almoft always from the Weft. To which we may add, that the Air which is brought hither by the North Wind, comes condenfed by the Cold.

Fourthly, In the moft Northern Countries, there is greater Variation of the Height of the Quickfilver in the Tube, than in thofe Countries which are more South, becaufe in thofe Countries, theWinds are ftronger and more variable; aud oppofed by each other in a lefs Tract of Land; whence the Air is fometimes more heaped up and condenfed, and fometimes carried away and lightned.

Laftly, Between the Tropicks, there is the leaft Variation of all, in the Height of the Quickffiver in the Tube, becaufe there the Wind is for the moft part very gentle, and blows the fame way.

See the Philofophical Tranfactions, Number 181.
make the Quickfilver defcend at all ; and if the Heat of Summer cain do nothing towards fenfibly dilating it, the Cold of the Winter can much lefs do any Thing towards the condenfing it.
43. But whatever be the Caufe of the Quickfilver's rifing and falling in a Tube, where the Experiment is continual; the greatelt Height that I have obferved for fifteen Years, in a Tube which I prepared for that Purpofe, was Twenty eight Inches, and a third Part of an Inch; and the loweft was Twenty fix Inches and feven twelfth Parts of an Inch, fo that the greateft Difference in the Height of the Quickfilver, was an Inch and three quarters.
44. Though all thefe Experiments are fufficient to convince us, that it is by the Weight of the Air, that the Water or Quickfilver is fupported or made to rife in the Tube; yet it is eafy to conceive how there may be an Alteration made in the Height of the Quickfilver, and yet no Change made in the Air it felf: In order to this, we need only make the Experiment in two different Places, the one the highelt, and the other the loweft that we can come at: For there being a lefs Quantity of heavy Air in the higheft Place, the Quickfilver cannot be fupported by it to fo great a Height as in the loweft.
4.5. 7 the $\operatorname{fin} / \beta$ Experimert.
45. Now in order to try if Experience would agree with our Reafoning, I filled a Tube three Foot and a half long, with Quickfilver, and immerfed it into a deep and Itrait Veffel, into which it emptied it felf as ufual, afier which I fixed them both in a Wooden Framc, made for that Purpofe: And now the Inftrument being fuch as could conveniently be carried from one Place to another, without any Danger of fpilling: I carried it to the Surface of the River Seine, which happened then to be frozen, and obferved exactly the Height of the Mercury: After which, I went up one of the Towers of the Church of the Virgina Mary at Paris, which is about Two hundred and fixteen Foot higher than the Place where the firft Experiment was made, and here I found the Quickfilver was not fo high in the Tube as before, by near three Lines, that is, near a quarter of an Inch.
46. Another more fenfible Experiment.
46. The fame Experiment was tried in Auvergne, in one of the loweft Places of the Town of clermont, and upon the T'op of a neighbouring Mountain, called Puy de Dome, which is about Three thoufand Foot higher than the Vally , and the Difference in the Height of the Quickfilver was found to be above three Inches.
47. As this Experiment is more fenfible than mine, if it was made, as there is Reafon to think it was, with all the Exactnefs one could wifh; it furnifhes us with an eafy Method of finding the Height of the whole Air, fuppoling it to be every where of the fame Denfity as it is near the Earth: For fince upon taking away Three thoufand Foot of Air, the Quickfilver finks three Inches, this is a Proof, that a Column of QuickGilver of three Inches high, weighs equal to Three thouland Foot of Air, and confequently the Height of the whole Air, which counterpoifes Twenty feven Iriches and a half of Quickfilver, is Twenty feven thoufand and five hundred Foot high.
48. As therefore we conclude, that when there is lefs 48. That all Height of the grofier Air to prefs upon the Quickfilver filver would in the Veffel ; there ought alfo to be lefs. Height of that fall out of the in the Tube; for the fame Reafon, if we fuppofe that there were no grofs Air at all to prefs it upwards, we ought to conclude that all the Quickfilver would fall down, fo that That in the Tube would be level with that in the Veffel.
49. Some have imagined it impoffible to make any Obfervation by which it Mould appear, that Reafon, and Experience agree in this Particular; becaufe there is no Mountain high enough to carry us up to the upper SurTube, if there were no grofs Air to prefs utpon the Vesfol. face of the Air; and becaufe, if there were, the Air would be fo thin, that we could not breathe in it. But I thought of a Means to remove thefe two Difficulties, and by which the Thing might eafily be effected; and that was, to prepare fome fmall Room, with tranfparent Walls, which one might ftand without and look upon, without any Danger from what might happen within. I caufed therefore a Glafs Inftrument to be made, according to the following Reprefentation. BC is a Tube, upwards of Tab.I. Fig,7. Twenty feven Inches and a half long, and is open at C: $A B$ is a large Cavity, which has a Communication with BC by the Part B L, and is clofed, and has no Aperture at $A: D E$ is a fmall Glafs Tube ftopped up at the End D, and fticks out of the Cavity $A B$ by the Length $F E$, and is open at E : Befides there is a fnall Hole. F in this little Tube, where it is cemented on the outfide to the Glafs $A B$ in fuch a manner, that the Cavity of the little Tube has a Communication, with the large Cavity $A B$ by this little Hole F:-Latly, by means of the NeckBG, the external Air has a Communication with that in the whole Tube ABC.
50. How the foregoing In firsument is to be ufed.
50. I firt ftop the Hoie G with a Hog's-Bladder, and turning the whole Inftrument, fo that the End C may be uppermoft, then I pour in the Quickfilver at the Hole E, which at firit falls only into the little Tube DFE, but when it is full up to F, then continuing ftill to pour in, it runs through the Hole there, and fills the Cavity AB which furrounds this Tube, which I fill up as high as B; then I fill the reft of the large Cavity, pouring the Quickfilver in at C, "till it rifes as far as the Hole E, which I ftop then with a Hog's-Bladder; after this, I continue to pour the Quickfilver in at the Hole C, 'till the Tube BC is quite full, Having done this, I ftop the Hole C with my Finger, and invert the whole Inftrument which is full of Quickfilver as ufual, and immerfe it in a Veffel of the fame; Then the Cavity AF empties iffelf as far as IL, and at the fane Time, the little Tube DFE empties itfelf to the fame Height, and the Tube C empties it felf to H , which is Twenty feven Inches and a half above the Quickfilver in the Veffel : And thus we fee that Reafon and Experience agree; for as there is no grofs Air to prefs upon the Surface IL of the Quickfilver which remains in the Bafon IFL, fo there is nothing to force it to rife in the little Tube DFE.
51. Surprizing Effects from the En trance of the Air into the Enfrument.

5r. Now if the Hog's-Bladder which ftops the Hole at G, be pricked with a Needle, it is evident, that the groffer Air which enters into the Cavity ABG ought to produce Two very different, and therefore very remarkable Effects : The firft is, That preffing upon the Quickfilver which is directly under G, it will caufe it to defcend; and alfo preffing upon the Surface IL of the Quickfilver which remains in the Bafon IFL, it will makePart of it to afcend in the little Tube DFE, and fill it quite full, provided it does not exceed Twenty feven Inches and a half in Length. The Experiment will be more pleafant, if after the Hog's-Bladder, with which the Hole G is ftopped, be pricked, the Needle be pulled back feveral times a very little, to let a little Air in at a time through the Hole, and then thruft forward to fop it again; for then you will have the Pleafure to fee the Quickfilver in the little Tube DFE afcend by little and little at the feveral times, and that in the Tube BC defcend in the fame manner. Then it the Needle be pulled out all at once,

Chap. iz: of Natural Phllosophy?

you will fee at the fame time it will rife as much on the one Hand, as it falls on the other. 1
52. If the Liquor with which the Bafon belonging to the Tube is filled, falls all down, becaufe there is no Air to fupport it, as we fee in the foregoing Experiment, where the little Tube DFE, is entirely emptied of the Quickfilver; the Reafon holds ftronger for its not rifing, if there be no Air to thruft it up; wherefore there is no need of making any. Experiment, to be affured, that the Water ought not to rife in a Syringe, when the Sucker is drawn, if the Veffel in which the End of the Syirnge is immerfed, be fo ftopped, that the external Air cannot enter into it. But if any one be ftill fo ubftinate, as not to be content without referring it to Experience, he need only put the End of the Syringe into the Mouth of a Glars Bottle, which is round and ftrong, and full of Water; but not begin to draw the Sucker, 'till the Mouth of the Bottle be well ftopped with Wax, or fome fuch Thing, to prevent the external Air entring ; and then he will fee that the Water will not rife at all in the Syringe.
53. That we may go on to explain the moft confiderable Pbenzomena of Hydraulick Inftruments; I come now to give an Account of the Syphon. Let ABCD then be fuch a Syphon, the Chorter Arm of which CD is put into a Velfel of Water; Then, as has been often faid, the Air which preffes upon the Water which is in the Veffel, ought not to make it rife up in the Syphon, becaufe the Air which is in the Syphon hinders it.
54. But if the Water in the Veffel be made to rife up into the Syphon, either by fucking it at the End A, or any other way, fo that it be filled quite full of Water, and then we take our Mouth away from the Hole A, the Water will not ceafe to run, but continue running, fo long as the fhorter Arm CD remains in the Water in the Veffel: The Reafon of which is this. So long as the fhorter Arm CD is immerfed in the Water, the Force of the Air indeed, which preffes upon the Water in the Veffel, and which endeavours to make it rife in this Arm, is not fenfibly greater or lefs, than the Force of the Air which endeavours to repell it, when it offers to run out at the Hole in the other Arm: But becaufe the Force of

1. You may find the Defcription of an Infrument not much unlike this in the Experiments of the Academy dei Cimento. But the Air Pump
of the famous Mr. Boyle exceeds them all, and is fo well known, that. I need not defcribe it.
each of thefe two Arms is diminifhed, in proportion to the Weight of the Water which each of them impels; and the Weight of the Water in the longer Arm being heavier, than that in the fhorter Arm; it follows, that there remains more Force in the Air which acts upon the Water in the Veffel, to make it rife in the fhorter Arm, than there does in the other to repel if; fo that it is indeed made to rife, and forced to run out through the longer Arm, notwithfanding the Refiftance of the Air which oppofes it.
2. How bigh the Arms of the Syphore znuft be for the Water to afeend.
3. How the Air is draion into a pair of Be!lows.
4. How we draw in the Air by Refpiration.
5. Whence it is that we find no Difficulty in breathing.
6. I here fuppore, that the Arms of the Syphon do not exceed that Height of the Liquor which the Air would fuftain in a perpendicular Tube; for if they be longer, the Liquor with which the Syphon is filled, will divide at the Top, and defcend in each of the Arms; which is confirmed by Experience.
7. After fo many different Explications as have been already given, I don't think it neceffary to inlarge much upon explaining how the Air enters, and is received into a Pair of Bellows; for it is eafy to apprehend, that when the Sides are feparated from each other, they thruft forward the Air, which not being able to move freely every way, I becaufe the World is full, or at leaft not being able to enter in at the Nole with Eafe, and quick enough to fill readily that Space which is left by the Sides of the Bellows when they are opened; is turned back, and enters with Eafe and Swifnnefs through the Holes of the Bellows.
8. It is proper here to obferve, that we receive in the Air by Refpiration, much after the fame manner: For it is certain, that the Mufcles of the Thorax and Abdomen, ferve to diftend, and fwell the Body, by which Means the Air being thruft back, gets into the Hollow of Lungs through the Mouth and Nottrils.
9. The only Difficulty here is, that fince we fuftain a great many Columns of Air, which are all heavy, and which prefs upon the external Parts of our Body, and thruft it inwards; it fhould feem that we ought to feel fome Difficulty in breathing, in order to overcome this Refiftance : But the Anfwer is eafy; For if there be fome
[^12]Qen. Which I remark bere, to Show, that whatever becomes of the Fulnefs of the World, the Explication of thefe and fuch like Motions, is the fame.
to thrult it inwards, there are alfo a fufficient Quantity of others, which enter into the Cavity of the Breaft to prefs it outwards; fo that there is an equilibrium between thefe Forces or Powers; and this is the Reafon why we ought not to find any Difficulty in Breathing, or if we do, it is owing to fome other Caufe.

59: The fucking in of Air through a Quill is done in 59. How it is the fame manner as Refpiration; for it is the fame as if our ${ }_{\text {int }}^{\text {that }} \mathrm{mof}$ frck Mouth were as long as the Quil.
60. If we try to fuck a heavy Liquor through a Quill dipped into it, we ought to find fo much the greater Difficulty as the Quantity of Liquor we make to rife is greater; becaufe this Liquor preffing by its Weight upon the external Air which endeavours to raife it in the Quill, I hinders it from impelling and affifting the Air. which is in the Lungs, fo much as it ufually does; by which means the Air in the Lungs is weakned, and has juft fo much lefs Force to thruft the Parts of the Body outwards, than the Air which is applied to the external Surface of the Body has to thruft them inwards, as the Liquor which is caufed to rife in the Quill is heavier.

6r. I thall finifh what I have to fay concerning thefe 6r. ConcernSort of Motions, with explaining that Swelling which Surgeons make in the Fleth, by the Application of Cup- of Cuppping-ping-Glaffes; the common Method of which, and that to which all others may be reduced is this; they take a fmall round Card, upon which they fix four fhort pieces of Wax-Candle, which they light, and fet like a Candleftick upon the Part of the Body which they intend to cup: Then they cover all the Candles with the Cupping-Glais, bnt do not put it clofe to the Flefh, 'till the Air that is within it, is fufficiently heated; then as foon as it is

[^13]put clofe, the Candles go out, and we fee the Flefh fwell, and rife up.
62. VVhy the Flegh Sivells.
62. In order to underftand the Reafon of this Experiment, it is to be obferved, that during that fhort time that the Candles continue light, the Air which is in the Cupping-Glafs, I though very much agitated and dilated by the Flame, does however prefs upon the Flefh, as much as it did before, becaufe the Cupping-Glafs being not yet put quite clofe, does not take off any of the Weight, which it had before it was dilated; but it is otherwife after the Candles are extinguifhed by the immediate Application of the Cupping-Glafs' to the Body: For then the Air which is contaiued in it, is no longer preffed upon by the Air without, and as it grows cooler, it has not Force fufficient to take up fuch a Compafs, as when it was agitated by the Heat: Wherefore fince all the other Parts of the Body are preffed upon by the external Air, which alfo preffes the Cupping-Glafs to the Body, the one muft of neceffity enter into the other ; that is, the Flefh muft be thruft into the Cupping-Glafs, and the Air within it condenfed.

[^14]
C H A P. XIII.

Of the Determination of Motion.

1. V What is meant by the Determination of Motion.
2. That fuch

Determination is Something diffinct from Motion. The firft Proof.

WHEN a Body moves any particular way, the Difpofition chat it has to move that way, rather than any other, is what we call its Determination.
2. Determination is a Mode which is diftinguifhed from Motion, and which may remain the fame, how much foever the Motion be increafed or diminifhed: Thus a Stone that falls freely in the Air, has a certain Quantity of Motion, and at the fame time; has alfo a certain Quantity of Determination of Motion downwards, and

Chap. 13. of Natural Philosophy.

79 and if it had been thrown oblique from the fame Place, fo as to have come to the Ground in the fame time, it would have had the fame Quantity of Determinations, but a greater of Motion.
3. Another Proof that Determination differs from Motion, is, that it depends upon a different Caufe from that of Morion, thus in a Ball ftruck by a Racket, the Motion is owing to the Force with which the Racket is moved, but the Determination towards any Part, is owing to the Situation of the Racket,
4. Since every Thing endeavours as much as it can to continue in the State in which it once is, it is evident, that a Body which has once begun to move with a certain Determination, ought always to keep the fame, that is, it ought always to move in a ftreight Line, for this is the only Determination that is 1 natural to a Body in Motion: Wherefore when it was faid above, that when any Body was moved in a ftreight Line, orher Bodies muft neceffarily be moved with a circular Motion, we are not to think that thofe which thus turn out of a ftreight Line, tend to do fo themfelves, but that they are forced to do fo, by meeting with, and being impelled by other Bodies.
5. Therefore when we fee a Body move in the Sides of a Square, we conclude, that in the Places where it changes its Determination, it is forced to turn out of the way, by meeting other Bodies, the Refiftance of which, it could not overcome. So likewife if a Body moves through the Sides of an Ottagon, we can't but fay, that

1. Natural to a Body in Motion) Mr. Perrault in his Tentam. Phyf. Tom. I. p. 80. 88. contends, that Motion in a Circle is as natural as in a ftreight Line; for terreftrial Bodies turned round, endeavour to go off from the Center of their Motion, becaufe they are heavy; but if a Body that had no Weight at all were turned round, it would revolve about its Center freely without any Impulfe, and would nor eadeavour to go. off from it: Thus if a Ball of Wax be fo made hollow, as to equal in Weight an equal Bulk of Water, it will fo comply with the Motion of the Water turned round in a Vefiel full of Water, that it will always defcribe the fame Circle, and never atrempt to go off from the Center of its Motion. But (befides that there is no fuch Thing as a Body void of
all heavinefs) this Affertion is contrary to all Reafon, and this very Experiment proves nothing lefs, tharn what this eminen: Perfon imagined: For what can be more evident, than that this Ball endeavours to go off from the Center of its Motion, bus cannot get off, becaufe all the Parts of the Water endeavour at the fame time to go off from the fane Center, and with the fame Force, becaufe equally folid; and therefore fince the Sides off theVeflel hinder them from going all of together, there is no reafon why the Ball of Wax fhould recede from the Center, and impel the Parts of the Water to the Center, any more than there is for the Parts of the Water to recede from the fame Center, and drive the Ball thither.
2. That evary Body which moves in a Circle, is forcen to do fo. \cdots - 4 . $-\frac{1}{2}-\frac{1}{2}$ 1. .
3. That a Ban dy cloes not tend of it felf to go out of the pay, "but cinly to move on in a fireight Line:
4. Anothes Proof.
it is cight times forced to turn out of the way; and fince a Circle is equal to a Figure of an infinite Number of Sides; it follows, that a Body which moves in a Circle, is forced to turn out of the way every Moment, either by the continual Refiftance of Bodies which it every where meets with, or becaufe it is retained by fomething which obliges it to keep always at the fame Diftance, and to run through the Circle delcribed, otherwife it is certain it would not defcribe a Curve Line at all.
5. If that Force ceafes, then it ought to move in the Tangent of that Circle wobich it de-al fcribed before.
Tab.II.
Fig. 2.
6. For Example, if the Body A defcribes by its Motion part of the Circle BCD, it muft be continually turned out of its Courfe from one of the forementioned Caufes: If, when it comes to the Point D, it fhould be no longer forced; either becaufe the Bodies which it meets with, fhould make no further Refiftance, or the Thread which connected it with the Center, and hindred it from flying off, fhould break, it would not continue to defcribe the Arch DEB, but it would defcribe a ftreight Line, which would run the moft directly that is poffible from the Arch CD, that is, it would defcribe the Line DF, which is the Tangent of this Circle, and makes the leaft - Angle that can be with the Circumference, and which, as you fee, grows more and more diftant from the Center: This is confirmed by an infinite Number of Experiments.
7. Bodies which move in a Circle, endiearour to go off from the Center of the Circle which they defrribe, and make other Bodies approach to it.
8. That a Body in Motien meeting with another Body pobich it cannot move, ought to be reflecied.
9. And fince a Body in Motion, has always a Tendency to defcribe that Line, which it would defcribe if it were at liberty; and what was faid of the Body A, is to be underftood in general of all other Bodies; we muft conclude, that Bodies which move in a Circle, have a perpetual Tendency to recede from the Center of their Motion; and this they ought to do with a Force fo much the greater, as their Motion is quick. Wherefore, if the greater part of the Space contained in the Circumference BCDE be full of Bodies which move round the Center G, they will pufh all the other Bodies with which they are encompaffed, and drive them as far from the Center as they can: But if thefe Latter can find no Place to retire to, they will be forced, in order to give Place to the other, to go nearer the Center; in the fame manner as when we dip our Hand into a Pail of Water, the Water is forced to give way to our Hand, and to remove from the Bottom, which it has a Tendency to by its own Weight.
10. It is evident, that a Body lofes fo much of its own Motion as it communicates to other Bodies: Now if it communicates no Motion at all to others, (we do not
here confider what may be occafioned by its Sofnefs, Weight or Figure) we have no Reafon to think that it fhould at all abate of its Velocity. Wherefore if a Body in Motion ftrikes upon another, which it cannot move at all, we ought to conclude, that it will continue to move on with the fame Celerity as it did before; but becaufe the Body which it cannot move, hinders its Deternization, it muft neceffarily alter this Determination, that is, it will be reflected.
11. This Second Determination, may indeed be contrary to the Firft: but becaufe the Notion we have of reflected Motion is not different from the Noticn we have of direct Motion, we ought not to think that thefe Mo- of Refferioe tions are contrary to each other, but that I the one is only a Continuation of the other, and confequently, that there is not any Moment of Reft in the point of Reflexion, as fome Philifophers have imagined.
12. Befides, if a Body which was in Motion, comes 10. That Reto be but one Moment at Reft, it will have wholly changed its manner of exifting into the contraty, in which there will be as much Reafon for its continuing; as if it had been at Reft a whole Age; in the fame manner; as if a Body which was once fquare, was made round but one Moment, it will have as much reafon as ever it had, to continue in this Figure.
II. When a Body falls perpendicularly upon amother, which is hard and immoveable, it is evident; that the Reflexion ought to be made in the fame Line, in which the Body moved before, there being no Reafon why it Thould incline one way rather than another: Wherefore there is no Difficulty in this Matter, except when the
ficxion mould be impofilile, if thers woas a Noment of Ref: Line in which the Body begins to move makes oblique Angles with the Superficies of the Body againft which it ftrikes. But the Judgement we are to make of this, depends upon what we are going to fay concerning the Compofition of Motion, and of its Determination.

[^15]a Continuation of the Direit; buta new Motion impreffed by a new Force, viz. the Force of Elaficity.

As to what our ^uthor fays ; that if the Body refted bat one Moment; it ought as much to continue in that new State of Reft, as if it had refted a whole Age; it is indeed true, with regard to the former Motion; bue fince Elaficity is the Caufe of a new Motion, thie Reafor is very different.
II.That : Body which falls ferperndicularly zipon another, ought to be re-: flefted per-

C H A P. XIV.

Of the Compofition of Motion, and of its Determination.

1. What is meant by compound Motion.

Tab. II.
Fig. 3 .
-
2. Troother Motions being given to find the compoundMotion.

Tab. II. Fig. 3.
3. A Demonfration of compound Motion.

AL L Motion that depends upontwo or more Caufes, we call Compound Motion: Thus, if one Force acting upon the Body A, would caufe it to move along the Line $A B$, and at the fame time another Force acting upon the fame Body A, wound caufe it to move along the Line AC, the Motion which will arife from the Action of thefe two Forces, or from thefe two Caufes, will be a compound Motion.
2. In order to find out what Line the Motion, which depends thus upon two Caufes, ought to be made in; let the two Lines be drawn, which the Body would move in, if each of thefe Caufes produced their Effect feparately. For Example, if the firft Caufe would in a given Time, make the Body A move from its Place, as far as B; and if the Second Caufe would in the fame Time, make it move to C; let the Lines $A B, A C$, be drawn; then having divided the Time in which this Motion was made, into as many equal Parts as you will, divide the Line $A B$ into as many, by the Points E, F, G, and the Line AC into as many alfo, by the Points H, I, L; fo that, if the firft Caufe acted alone, the Body A, would come to the Point. E, in the firft Part of the Time, to the Point F, in the fecond Part, to the Point G in the third Part, and to the Point B in the Fourth; and if the fecond Caufe, produced its Effect feparately, the Body A would come to the Point H , in the firt Part of Time, to the Point I in the Second, to the Point L in the Third, and to the Point C in the Fourth: After this, draw the right Lires EM, FN, GO, BD, CD, parallel to the Line $A C$; and the Lines HP, IQ, LR, CD, parallel to the Line $A B$: This being done, the Points S, T, U, D, where thefe Lines interfect each other, will determine the Line in which the Compound Motion is made.
3. For it is certain, that the firlt Caufe is anfwered, by allowing the Body to move to the Line EM in the firft Part of Time, and the Second is anfwered, if we allow it to be found in the Line HP in the fame time; wherefore both thefe Caufes are anfwered at once, if the Body

Chap. i4. of Natural Philosophy:

comes to both the Lines EM, HP, at the fame Time, which it cannot do, but at the common Point S. Again, it is evident, that the firt Caufe is anfwered, if we allow the Body to come to the Line EN in the fecond Part of Time; and the fecond Caure is anfiwered, if it be allowed to come to the Linc IQ in the fame Time, and confequently it is certain, that, in order to anifwer both thefe Caufes together, it mult be found in thefe two Lines at the fame time, viz. in the Point T where they interfect each other. So alfo we may prove, that the Body ought to be found in the Point V, where the Lines, GO, LR, interfect each other, to anfiwer the fame two Caufes, and at laft in the Point D, where the Lines $B D$ and $C D$ interfect one another ${ }^{1}$.
4. Where 2 the fimple Motions are equal, as in the firf Figure, the compound Motion is in a fleceght Lize: But where the fimple Motions are unequal, as in the Second LinescomFigure, the Motion will be made 3 in a Live differently curved, according to the different Inequalities of the fimple Motions.
5. If more than two Caufes concur to produce a compound Motion, it may be determined in this manner: Firlt draw the Line in which the Body ought to be moved, fo as to anfiwer two Caufes; then, taking the Motion in this Line, as if it arofe from one Caufe only, draw the Line which it ought to defrribe, fo as to anfwer this

1. Such a kind of Motion as this, is that of an Arrow, in the famous Experiment of a Ship under fuil Sail; where an Arrow being fhot perpendicular, falls down again upon the fame Place on the Deck, whence it was fhot: For the Arrow has a double Motion impreffed upon it at the fame time, one by the Bow or Hand which fhoots it, and the other by the Ship moving along. Something like this was oblerved at Florence, where a Leaden Ball fhot perpendicularly up out of a Musket hxied in a Wooden Carriage made to move very furiftly, fell aburat feven Foot on this fide the Mouth of the Musket, which moved Sixty four Paces. See Exper. Acad. del Cimento, p. 145. Perhaps the Musker, was not erested exactly perpendicular, or was moved fomewhat fwifter after the Bali was hor out, than when it was Shot; or if neither of thefe happened, yet the Refiftance of the

Air, which could not but retard the Motion of the Ball, might perhaps be the fole Caufe why the Ball fell fo much on this fide the Musket.
2. The fimple Motions are equat) It is to be obferved, that thofe fimple Motions which are here compared with each o- Fig. 3. ther, and are called equal or unequal, are not thofe of different Determinations (fuch as aB, AC, but the Parts of the Motion of one and the fame Determination (viz. AE, EF, éc. AH, HI, éc.) compared together.
3. In a Line differently curved) When one or both the fimple Motions is altered gradually and every Moment; the Line which is defcribed, may be conceived to be bent into an infinite Number of fmall Lines which end in a Curve. Such is the Motion of projected Bodics. See the Netus on Part Il. ch. 28. Artic. 16.

Caufe, and a Third, and fo on, if there be a Fourth or fifth Caufe, producing its particular Effect.
6. That the Motion of a Ball out of a Cannon, is a comporend Motion.
6. It is eary to fee, that the Ball of a Cannon which feems to be driven by the Fire level with the Horizon, does, notwithftanding move in a Curve like that defcribed in the fecond Figure; for there are two Caufes which concur towards its Motion, the firt of which, viz. that which caufes the Ball to move upon the Level, ought continually to diminifh, becaufe it communicates, by little and little, its Motion to the Air which it difplaces; and the fecond ought to increafe, becaufe we find by Experience, that the Fall of a heavy. Body is flower at the Beginning than afterwards.
7.That the, 7. The Exactnefs of the Cannoneer in levelling the Canlevelling it at non to the Mark which he looks at, ought not to make ${ }_{\text {fhems }}^{\text {the }}$ Mark the us alter our Opinion, and to think immediately that the Jhows that the
Baldernds. Ball is carried in a ftreight Line : For if we obferve, that the Cannon is not every where of an equal Thicknefs,
Tab. II. and that the Line AB by which the Mark is aimed at;
Fig. 4 . is at firt above, but goes afterwards below the Line of Direction CD; we fhall conclude, that if the Ball hits the Mark, it has doubtlefs fallen a little, or elfe it would have gone a little above it.
8. V Vhat is 8. As there are Compound Motions, fo alfo are there commeant by com- pound Determinations, and, it may be, when the Motions pound Deter- are the moft fimple that can be: Thus we fay, a Deter-
miniationt. mination is compounded of two others, when a Body moving in a fimple Line to a certain Place, is at the fame
Tab. II. time carried two different Ways; as if the Body A be
Fig. 5. . moved with a fimple Motion from A to B; becaufe at the fame time, it continually approaches the Lines $B C$, BD, we fay, that the Deternination, by which it is carried from A to B, is compounded of two others, one of which would make it go towards D , and the other at the fame time carry it from A to C ; and thefe Diflances are the Meafure of its Progrefs towards thefe different Parts.
9. That one 9. For the fame Reafon that we confider any one D_{e} anai the fame termination as compounded of two fimple Determinations, Determianati- we may as well confider it as compounded of innumerable
0 and may be others. Thus the Determination from A to B may be many diffe-e cond condidered as compounded of the Determinations from A
rent ounes rent ones. to E, and from A to F; becaufe when the Body A moves from A to B , it continually approaches BE and BF

alfo, from which it was diftant by the Length AE and AF I .

1. From this Principle, the Me thod of explaining the Forces of the Mechanick Powers (as they are called,) may excellently well be deduced.

For fince a Body with two unired Forces, always defcribes the Diagonal of a Parallelogram, in the fame Time, as it would do the Sides, if the Forces were feparate; it is evident, that any Force whatoever, acting in a givenDirection, may be looked upon as the Effect of two other Forces acting in Directions, which at the fame Point, Shall on each fide, be any way inclined to the given Di rection, provided they make an Angle lefs than two right ones: And this is abundandly confirmed in Mechanicks, for by fuch a Kefolution of a given Force into two others, the known Properties of the Mechanick Powers, fuch as the Ballance, the inclined Plain, \&c. may eafily be deduced.

Of the Ballance or Leaver. Prop. I.

If two Forces, which aet upon the Arms of a Ballance in given DireCtions that are in the lame Plain with thofe Arms, ballance one another ; thefe Forces are to each other reciprocally, as Perpendiculars let fall from the Center of the Ballance, to their Directions.

DEM.---(See Nestot. Princ.pag. 14.)
Let C be the Center of the Ballance, $\mathrm{C} p, \mathrm{CP}$ the Arms, Ep , Tab. xx. PA the Direations of the Fig. 1. Forces acting upon the Arms C p, CP. Let CE be drawn perpendicular to $p \mathrm{E}$, and $C D$ to PA, meeting them in E and D. On the Center C , and with the Radius CE, viz. the longeft of the Perpendiculars, let a Circle be defribed which fhall interfeet the Direction of the Force P in A, and let the Line CA be drawn. To which let AG be drawn perpendicular, and GF parallel, meeting DPA in F.

It is evident, that the Arms of the Ballance $\mathrm{CP}, \mathrm{C} p$, may be looked upon as Lines that will not bend, lying in the Plain moveable about the Center C; and the fame may be underftood of any ocher Lines drawn
through the Center C, and lying in the fame Plain. Now fince it is manifeft, that there is no difference in what Points of the Lines, in which the Forces P and p act, thofe Forces are placed; fince wherefoever they are in thofe Lines, they will have exactly the fame Power to turn the Plain CDApE about its Center: the Forces P and p may be fuppofed to be in the Points A and E. Then the Force P, fuppofed to be in A, may be refolved (as was before obferved) into two other Forces: One of which may act according to the Line CA produced, and the other, according to the Line AG; and which may be to each other as FG to GA, but each of them fingly to P , as FG and $A G^{-}$ fingly to $A F$, as will be evident, if the Triangle AGF be compleated in the Parallelogram AGFg. It is alfo manifeft, that the Force, which is as FG, and which aets according to the Line CA paffing through the Center of the Plain, does nothing at all towards turning that Plane about the Center C ; but the Force which is as AG, and which draws the Line CA perpendicularly ; fince, by the Hypothelis, it ballances the Force p, which draws the Line CE, equal to CA (by Confiruction) perpendicularly alfo, it muft neceffarily be equal to it. Wherefore p will be to P as AG to AF ; or as DC (by reafon of the fimilar Triangles FGA, ACD) to CA or CE : 'That is, the Forces p and P are to one another reciprocally as Perpendiculars let fall from the Center to the Lines in which they aft.

Coroll.

If the Arms lie in a ftreight Line, and the Determinations of the Forces be parallel, it is evident, that the Forces are reciproaclly as the Length of the Arms.
2. Hence alfo, in the Angular Ballance PCp, which turns about the immoveable Tab.XX. Center C; the Situation Fig. 2, which it will be in, when any two given Bodies are fixed to the Ends P and p, may be determined. For if the Line $P p$ which joins the Ends of the Ballance be divided in reciprocal Proportion to the Weights, and the Point of Divifion
10. That it
is not necef.
fary to consi-. der all the
Determina-
tions of which
Determina-
tions of which

One may be compofed.
10. But it is not neceffary to confider all the fimple Determinations, of which one may be compofed: It is fuf-
T be made in the Line CT drawn through the Center, parallel to the Direction of the Weights: I fay it is done: For PI) and $p \mathrm{E}$ being drawn parallel, and LCE perpendicular to CT; it is evident that DCE is divided in C , in the fame Proportion that PTp is in T, and that the Weights may be fuppofed to be placed in the Points D and E. Wherefore this will be the Situation of the Points P and p, that is, of the Ballance it felf when the Weights are in aquilibrio.
3. In the Ballance or Leaver, it is evident, that two ForTab. XX. Fig. 1 . cesofuch as P and p, which, when the Ballance librates to and fro, are reciprocally as the Velocities of the Points D and E , reckoned according to the Directions of thofe Forces, will ballance each other.

Of the inclined Plain. Frop. II.

If a Force, with a given Direction, fupports a Weight upon an inclined Plain ; that Force is to the Weight, as the Sine of the. Inclination of the Plain, to the Sine of the Angle which is made by the Line in which the Force acts, and the Line perpendicular to the Plain.

D EM.

? Let AB be the inclined Plain, P the Weight fupported, DPV
Tab. XX. the Direction of the Force Fig. 3. which fupportstheW eight. Let FC be drawn perpendicular to AB ; and from the looint C, let $C B$ be drawn parallel to the Horizon, and perpendicular to the common Section of the Plain and the Horizon, meeting the Plain in B ; and CA perpendicular to the Horizon and alfo to CB , meeting the Plain in A, and the Line in which the Force acts in V.

Now P may be conceived to be held unmoved by three Forces acting rogether: one of which is the Force of the Weight it felf tending downwards in a Line parallel to VC; the Second is the Force adting in the Line DPV ; and the Third is the Re-
fiftance of the Plain it felf, acting in the Line C P perpendicular to the Plain: But thefe three Forces are to each other (from what was faid hefore) as the Sides of the Triangle VPC; as will be evident, by draw. ing a Line through P parallel to VC , and complearing the Parallelogram. The Force therefore is to the Weight which it fuftains, as PV to VC ; that is, as the Sign of the Angle VCP, or $\triangle B C$, to the Sine of the Angle CPV or CPD. Q. E. D.

Coroll.

1. If the Points V and A coincide, that is, if the Force aets according. to the direction BA , the Angle CP , will be a right Angle; and therefore. in that Cale, the Force is to the Weight, as the Sine of, the Inclina-. tion of the Plain, to the Radius, or as the Height of the Plain AC, to its Length AB. And in this Cafe, the Force which is required to fupport a given Weight is leaft of all; becaufe the Propottion of the Sine of the, Inclination of the Plain, to the Radi-, us; is lefs than its Proportion to any other Sine whatfoever.
2. If the Point V falls above A; the greater the Angle APV is, fo. much the more Force is neceflary to, fupport the given Weight upon the Plain AB. Infomuch, that by increafing the Angle $A P V$, the Proportion of the Sine of the Angle $A B C$, to the Sine of the Angle CPD, is aIfo increafed, 'till PV, AV, becom-' ing parallel, and the Angles VCP, CPD for that Reafon equal, the Force and the Weight will alfo become equal.
3. So likewire, if the Point V falls below A, as at τ, the Force requifite to fupport the given Weight, is again increafed; the Angle APv being increafed, till $\mathrm{l}^{\prime} v, v \mathrm{C}$ become equal; the Force and the Weight will become equal again. Further, when the Lines P_{r}, PC coincide, and the Angle $v P C$ by that means vanifhes the Sine of the Angle ABC will bear an infinite Proportion to the Sine of that ; that is, no finite Force wha:foever, acting in a Line perpendicular to the Plain, will be able.

Chap. 14. of Natural Philosophy.

ficient to confider thofe which we have occafion for in the explaining any Difficulties; herein imitating Geometers,
to fupport the Weight upon the Plain.
4. If the Line in which the Force aEts be parallel to the Bafe of the Plain, the Weight is to the Force which fupports it, as $B C$ to $C A$, or as the Bafe of the Plain to the Height of it.
5. If from the Point P, PF be let fall perpendicular to Tab. XX. BC, and from the Point Fig. 4. C, CG perpendicular to VP; it will eafly appear, that $P V$ is to VC (that is, the Force is to the Weight) as CF to CG. Wherefore the Force and the Weight will then fupport one another upon an inclined Plain, when they are to each other reciprocally as Perpendiculars drawn from the Point C to the Lines in which they act ; (or, if GCF be looked upon as an angular Ballance moveable about the Center C) reciprocally as the Velocities of the Points G and F reckoned upon the Lines in which the Forces act.

Of the Wedge. Prop. 3.

If three Forces acting togther upon an Ifofceles Wedge, in Iines perpendicular to the three Plains of the Wedge; two of which Forces, wiz. thofe acting upon the Sides are equal to each orher, and the Direction of the Third which acts upon the Bafe of the Wedge, paffes through its Vertex; if, I fay, thefe three Forces fupport each other, the Force aEting upon the Bafe, will be to the other Two, as the Bafe of the Wedge, to the Sum of its Sides.

D EM.

Let ABC reprefent a Wedge; and let CG be perpendicular

Tab. XX. Fig. 5 . to $A B$, and GD, $G d$ perpendicular to AC , BC ; and thefe will be the Directions of the three Forces. In the Lines GD, Gd produced, let $D E$ and $d e$ be taken equal to each other, which may therefore reprefent the two equal Forces, which act upon the Sides, in the Direetions
$E D_{,} c d$. Let $E F$, of be drawn parallel to AB , and $\mathrm{DF}, d f$, parallel to GC , fo as to form the Iriangles DEF , def. Now each of the Forces ED, eit, may be imagined to be refolved into two other Forces, which are to each other as EF to FD, and ef to $f d$: And to aet in thofe Lines: And thofe two, which are as EF, ef, becaule they are equal, and oppofite, will deftroy each ocher. But the Force which acts upon the Bafe $A \cdot B$, in the Line GC; becaufe it fupports the two other Forces FD, f.d, both which are the fame way, and act in a contrary Direction to that Force upon the Bafe; is therefore equal to the Sum of them. The Force there fore aEting upon the Bafe of the Wedge, is to the Sum of the Forces acting upon its Sides as $D F+d f$ to DE $+d e$ or (by the fimilar Triangles) $A G+G B$ that is $A B$ to $A C+C B$.

Coroll.

The Velocities of the Wedge, and of the Body refifting it, reckoned in the perpendicular Direftion before explained, are to each other reciprocally as the Force acting upon the Bafe, to the Force acting upon the Sides of the Wedge, whenthefe Forces are in aquilibrio.

For when the Wedge $A B C$ is driven up to the Top, or is
in the Situation $a b c$, it Tab.XX. is evident, that the Pars Fig. 6. of the Body that is cleaved, have receded from each other, the Length δd or $G D$, in the Directions of the Line perpendicular to AC or $a c$; GC therefore is the Velocity of the Wedge, and GD the Velocity of the refilting Body. But (by the fimilar Triangles) GC. is to GD, as $A C$ to $A C$, that is, as $A C+C B$ to AB. And the Proportion will be evidently the fame, whatever Situation the Wedge be in, between the Parts of the Body to be cleaved by it.

Of the Scress.

A Definition.

If the Plain of the Triangle ABC (whofe Hypothenufe reTab. XX. prefents fuch an inclined Fig. $7 \cdot$ Plain, as was explained above in the 2d Propofition) be conceived to be fo fitted to the Concave Superficies of a hollow Cylinder (the Circumference of whofe Bafe is equal to the Line BC) that, the Plane ABC coinciding with the Superficies of the Cylinder, the Line BC may be bent into the Periphery of a Circle equal and parallel to the Circumference of the Bafe; the Line BA will form a kind of Spiral, afcending upon the Cylindrical Superficies, and furrounding it once: So likewife, if feveral Planes, fuch as A $a c$, equal and fimilar to the former, and whofe right Angles are fubtended by the Line BA produced, be imagined to be fitted in the fame manner, to the fame Superficies, diftant from each other, by the Space AC or $a c$ (their common Height) there will be many Spirals formed by the Lines $\mathrm{A} a$, \&zc. all continued from one to another, and each of them once furrounding the Cylindrical Superficies. Further, if other Planes fimilar and equal to $A B C$ be conceived in the fame manner to bc fitted to the gibbous Superficies of another Cylinder, whofe Bafe is equal to the Bafe of the Concave Superficies of the former Cylinder; there will by this means be Spirals formed in this gibbous Superficies, exactly like thofe in the Concave one before. Now if the latter Cylinder, which may be turned about its Axis, by means of a Leaver paffing through the Center of either of its Bafes, and lying in the Plane of that Bafe, be imagined to be fo placed within the former Cylinder, which is fixed and immoveable, that, the Superficies agreeing, the Spirals formed in each Superficies, may agree with one another alfo; and if it be fo contrived, that they fhall always thus agree, when the internal Cylinder is turned aboutits Axis, and its Bafe recedes from or approaches to the Bafe of the external Cylinder ; it
is evident, that two Screws, the Male and the Female may be conceived to be thus generated.

Prop. 4.

In the Screw, as the Altitude of one Spiral, is to the Circumference of the Circle, whofe Radius is the Leaver by which the internal Cylinder is turned round; fo is the Force perpendicularly applied to the End of that Leaver, to the Weight lifted up by the Screw, when the Force and the Weight are in equilibrio.

D E M.

Let the Axis of the Screw be perpendicular to the Hori-
zon; and the Pofition of Tab. XX. the Leaver, by which the Fig. 8. internal Cylinder is turned about its Axis, will be Horizontal. Let the Weight be placed any where in the Line of the Axis; and then that Weight, by means of the internal Cylinder, will prefs with equal Force (in Directions perpendicular to the Horizon) upon every individual Point of the Spirals of the external Cylinder ; and the Sum of the Forces with which all thofe Points are prefled, will be the fame as the whole Weight to be lifted up. But let us firft confider the Force, or that part of the whole Weight, which preffes upon any one particular Point. Now it is eafy to fee, that the fame Force, in $\$$ horizontal Direction, which is able to fupport the Weight, which prefles upon any one Point of the Spiral, upon the inclined Plain of which that Spiral is formed; that fame Force with the fame Direction, is alfo fufficient, to fupport the fame Weight upon the Spiral; and that there is plainly no difference, whether this Force be immediately applied to the Point which is preffed; or be in any other Line touching the Bafe of the internal Cylinder. Ler BC therefore be the Circumference of that Bafe; AC the Radius; AG the Leaver by which the internal Cy linder is turned about its Axis ; FGH the Circle defcribed by the Radius AG; Thefe Things being fuppofed; from what has been faid, together with

Chap. 14: of Natural Philosophy?

can be drawn from it, but fuch only as they think may be of Ufe in their Demonftrations.

the Definition of a Screw, and the $4^{\text {th }}$ Coroll. of the 2d Prop. it follows, that, as the Height of one Spiral, to the Periphery BC, to is the Force-applied to the Point C , in a Direction perpendicular to AC, to that part of the whole Weight, which that Force fupports upon any one point of the Spiral. And (by the Property of the Leaver) as the Circumference BC , is to the Circumference FH ; (that is, as AC to AG ;) fo is the Force exercifed in G to the Force exercifed in C, becaufe the Directions of thefe Forces being parallel, they have equal Power in the Leaver ACG, whofe Center is A. Therefore (equally by Perturbation) as the Height of one Spiral to the Periphery FH; fo is the Force which exercifed in G, fupports that part of the whole Weight, by which any one Point of the Spiral is preffed; to that part of the Weight it felf: And as the Force which fuppors that one parcicular Part of the whole Weight, is to that one particular part of the Weight ; fo is the Force which, acting in the lame Direction, fupports all the Parts of the Weight, that is, the whole Weight; to all thofe Parts together, that is to fupport the whole Weight. Therefore, Zひc. Q. E. D.

Coroll.

The Circular Velocity of that Force by which the Screw is turned round, and the Velocity of the Weight which is lifted up by means of the Screw, are to each other reciprocally as thofe Forces when they are in aquilibrio. For it is evident, that in a whole Revolution of the Leaver, the Weight is raifed juft the Height of one Spiral, and that in every Part of the Revolution, the Weight is raifed proportionably.

Of the Pulley or Windlefs. Prop. 5.

It is evident, that the Pulley may be accounted for, in the fame man-
ner as the Ballance or Leaver, in which the Forces are imployed either on the fame Side of the Center, or on both Sides: Which, when they are in aquilibrio, are to each other reciprocally as Perpendiculars, let fall from the Point which reprefents the Center of the Leaver, to their DireEtions. And hence the Forces of Engines, which conifift of many Pulleys, according as they are differently framed, may eafily be explained. If the Compofition of the Pullies, or the manner of framing the Windlefs be fuch, that the Ropes which are fitted to the Pulleys, are parallel to one another; and the Weight be fo fufpended in the midft of the Ropes, as to draw every one of them with equal Force, it is felf evident, that the Force, is to the Weight which it fupports; as One, to the Number of Ropes. For when that Force is applied to one of the Ropes only, it is directly oppofed to that part only of the whole Weight, which draws that Rope; the Pin to which the Windlefs is fixed, fupporting the other Parts of the whole Weight.

It is alfo evident, that in this Engine, the Force and the Weight, when they are in equilibria, are to each other reciprocally, as meir Velocities, when the Force raifes the Weight. For it is manifelt, that thefe Velocities are to éach other, as the Decreafe of the Length of all the Ropes which fupport the Weight taken together, to the Increafe of the Length of the Rope to which the Force is applied, in the fame time; and that juft fo much as is loft in a given time in all the Length's of the Ropes which fupport the Weight ; the very fame is gained, in the fame time, in the one Length of that Rope to which the Force is applied.

C H A P. XV. Of Reflexion and Refraction.

1. What is meams by Reflexion and Refrazdiaz.

THAT we may apply what has been faid to fome Advantage, we thall, by the help of it, explain the Manner of Reflexion and Refraction. But to avoid the Error of the Antients, who confounded thefe two Things together, we obferve; that by Reflexion is meant nothing elfe but the Bending, or Alteration of the Determination, when a Body in Motion, ftrikes againft another Body which it cannot penetrate; and by Refraction is meant the Bending or Alteration of the Determination, when a Body in Motion, paffes out of one Medium into another, which receives it with more or lefs Difficulty.
2. $\mathrm{An}_{\mathrm{In}}$ -
2. Suppofe, for Example, that the Body A, which is fannee of $\mathrm{Re}-$ perfectly hard, moves with a fimple Motion, in the Line flexien.

Tab. II.
Eig. 6.
B. That the Antle of R_{e-} Pexion is e qual to the Angle of I_{n} ciderice. AB , and that it meets with the Body CDEF, which I fuppofe to be perfectly hard likewife, and not to be fhaken : Then, from what has been faid, it follows, that the Body A 1 ought to continue in Motion, becaufe it does not communicate any part of its Motion, and it ought to be ftruck back, becaufe it cannot go on in a ftreight Line: But let us fee how, and which way: And that we may not multiply Difficulties, we do not now confider, what will arife from its Bignefs, Figure or Gravity: Let us fuppofe likewife, that the Air makes no Refiftance to it, and that it moves with equal Velocity.
3. This being fuppofed, let a Circle be defcribed on the Center A, and with the Diftance BA; and for the fame Reafon that the Body A comes from the Circumference to the Center in a given Time, it ought to go from the fame Center to fome Point of the Circumference of this Circle in the fame Time: Now to determine that particular Point, from the Points A and B, let the Lines $A G$, BH be drawn perpendicular tó the Superficies CF, and the Line AHI, parallel to that Superficies: Now we may obferve, that though the Body A is carried with a fimple Motion, it is however true, that with refpect to the Body CDEF, its Determination in the Line $A B$, is compounded of two others, the one of which makes it go towards the right Hand, by the Length of the Line AH,

[^16]
Chap. i5. of Natural Philosophy:

or which is equal to it, $G B$; and the other makes it come downwards towards GB, by the Length of the Line AG. Now we may further obferve, I that the Body CDEF refints the Determination downwards, but that it does not at all refift the Determination towards the right Hand, that is, that part of the Motion which is determined towards the right Hand, which confequently 2 ought to continue as it began. So that the Body A having in a given Time with this Determination, paffed through the Space contained between the Lines $A G, H B$, that is, moved the Length of the Line AH or GB, it ought in the fame time to pafs through an equal Quantity again, or which amounts to the fame Thing, it ought at the End of this Time, to be found in the Line IL, which I fuppofe to be perpendicular to the Superficies CE, and the fame Diftance from HB , as HB is from AG . So that, to fatisfy that part of the Motion which is towards the Right, which does not alter at all, we find that the Body A at a certain Moment of Time, ought to be fomewhere in the Line IL. But to fatisfie the whole Motion, we have before fhown, that it ought in the fame Moment to be fomewhere in the Circumference of the Circle: Therefore, that thefe two may be both fatisfied together, we ought to conclude, that it will at the fame Time, be in the Circumference of the Circle, and in the Line IL together, which can be no where elfe but in the Point L which is common to them both. Thus we fee the Body A which began to move in the Line $A B$, is reflected in the Line BI, which makes with the Superficies C the Angle

[^17]This is carefully to be obferved, becaufe it is neceflary to the compleating this Demonftration, by which it appears, that the Angles of Incidence and Reflexion are equal. For the Nature of this Elafick Force being rightly underfood, the De monftration concerning the reflecting of Elaftick Bodies, will hold in the fame manner as in perfectly hard Bodies, according to the Author's Principles. Sce further, the Notes on Chap. xi. Art. 6. Tab.II. Fig. 6.
2. Oreght to continue as it began) Hence it follows, that the Lines of Incidence and Reperculfion are in a Plane perpendicular to the Superficies of the reflecting Body. See the . Notes on Chap. awiviv. Art. 2 .

IBL, which is called the Angle of Reflexion, ' which may eafily be demonftrated to be equal to the Angle $A B G$, which is called the Angle of Incidence.
4. An $E x$ ample of one Sort of $R e-$ fraction.
Tab.III.
Fig. 1.
4. Let us now come to Refraction, and that we may explain the Nature of it fully, I thall here make ufe of the Example of a Ball, as was before done in Reflexion. Suppofe then the Ball A to be moved along the Line AB in the Air, but ftriking obliquely upon the Water below CD, inftead of going on directly towards E, it tends towards F, this Sort of bending, ${ }^{2}$ meafured by the Angle EBF is what we call Refraction.
5. Another 5. If the Body A, after it is arrived at B in the Line Sort of Refrattion.
Tab.III.
Fig. I. $A B$, inftead of being turned towards F, is turned towards G; this is Refraction alfo, but of a different Sort from the other: Now in order to diftinguifh thefe two Sorts of Refraction, let the Line HB, be drawn through the Point B, where the Body A paffes out of one Medium into the other, perpendicular to the Superficies CD, which divides the two Mediums, and the Kind of Refraction is determined, by the Approach to, or Recefs from this Perpendicular. For Example, if the Body which moves along the Line $A B$, when it is turned out of the way, afterwards moves along the Line BF, this is called Refraction from the Perpendicular; but if it afterwards moves along the Line BG, then it is called Refraction to the perpendicular.
6. When a 6. Thefe two Sorts of Refraction have been obferved a Body is turned ont of its Courfe, we muff think, that it meets soith fome Obfacle on that part from which it turns.

Tab. II. Fig, I. long time, but the Caufe of them was not at all known. And we may venture to fay, that this is one of thofe Things which the Antients were ignorant of, and the Difcovery of which is owing to one of the principal Men of this Age ; and agreeable to his Opinion, I thus explain this Matter: Since we are fure, that every Thing, as much as it can, perfilts in that State in which it is; after we find by Experience, that a Body quits the ftreight Line in which it began to move, we muft neceffarily think, that it has met with fome Obftacle on that part from which it removes: Thus, if, when the Body A is come to the Point B, it is turned out of its Courfe towards the Point F , we ought to conclude, that it meets

1. Which may eafly be demonftrated) For $\mathrm{BL}=\mathrm{GB}$ by
Tab. II. the Hypothefis ; and
Fig. 6. $\mathrm{LI}=\mathrm{GA}$, becaule GL and AI are parallel, and the Angles L and G are right An-
gles, by the Hyp. Therefore the Triangles ILB, AGB are equal and fimilar.
2. Meafured by the Angle EBF) Sec the Notes upon Art. II. of this Chap.

Chap. 15: of Natural Philosophy.

with more Refiftance on the Side M , than on the Side N ; and if it is turned toward G, we have Reafon to think, on the contrary, that it has met with more Refirtance on the Side N , than on the Side M.
7. We may reafon in the fame manner, in order to determine on which Side, a Body moving out of one Medium into another, will be turned. For fince we be- f fore knew, that the unequal Refiftance, which a Body in Motion meets with on different Sides, (according to the different Mediums through which it paffes) would fifance to is. force the Body to turn out of its Courfe, and to remove from that Side where it finds the moft Refiftance; when once we come to know, that there is more Refiftance on the one fide than on the other; we conclude, that it will turn out of the way, by removing from the Medium where the Refiftance is greateft. And thus when we once come to know that Water refifts the Motion of a Ball more than Air, we ought to think, that the Ball which moves in the Air from A to B, in paffing into the Water which is below B, will turn towards F, and fo will recede from the Perpendicular.
8. This may be applied 1 to all forts of Bodies, and to all forts of Mediums, and therefore we may lay it down for a general Maxim, that when a Body paffes obliquely out of one Medium into another, which makes a greater
8. The Way how to determine the particular fort of Refraction. Refiftance to it; it ought fo to turn as to remove from the Perpendicular, and, on the contrary, when it paffes out of one Medium into another, where it finds lefs Refittance; it ought to be fo turned, as to approach towards the Perpendicular.
9. I exprefsly added, that the Body which paffes out of one Medium into another, muft fall obliquely upon the Superficies which feparates the two Mediums, in order to be refracted; for if it falls perpendicularly upon this Superficies, as there is nothing to refift its Motion more on the one fide than on the other, fo it ought not to be turned out of its courfe at all, 2 but to continue to move in the fame Line.
10. The
> 1. To all Sorts of Bodies) For this Reafon the Rays of Light which pafs out of Air into Water, are reflected towards the perpendicular, contrary to what we fee in a Ball thrown out of our Hand; becaufe Water which refifts the Motion of the Ball more than Air, on the contrary, refifts Light les. (Sep Chap. 27.Art.
38.) or to fpeak more truly, it accelerates the Motion of Light more by attracting it; as will be fhown afterwards.
2. Brst to continue to move in the Same Line) Yet fome have thought, as 7. Vojlius, Willebrord Snell, that they have feen a perpendicular Ray of Light, fome way refracted and con-
10. In Example of the Motion of a refracted Body.
Tab.III. Fig. I. palfing obliquely out of one Medium into another, may be determined, provided we know how much the one Medium refifts its paffing more than the other. Suppofe, for Inftance, the Line CD feparates the two Mediums, the upper one of which is Air, and the under one Water, and that the Water refifts the Motion of the Ball A twice as much as the Air ; then let us imagine, that this Ball has run the Length of the Line $A B$ with fuch a Velocity, as takes up a Minute, and is then ready to enter the Water obliquely : and that the Thing may be the eafier apprehended, we meddle not with what might happen on the account of the Bignefs or Weight of the Ball. Let us imagine further, that its Motion in the Air has been all along uniform, and that after having loft half its Velocity by meeting with the Superficies of the Water, it lofes no more, though it finks never fo deep; for the Deviation I is made only in the Superficies, and the Water which refifts all its Parts equally, can only make the Ball take up more or lefs. Time in moving through a given Line, and not caufe it to move out of it.
11. How Refraction is made.
Tab. III.
Fig. 2.
11. This being fuppofed, having defcribed a Circle on the Center B, and the Diftance $A B$, let us confider, that the Ball having taken up a Minute of Time in moving from the Circumference of the Circle to the Center, where it lofes half its Velocity, ought afterwards to take up two Minutes in moving from the Center to any Point in the Circumference: Now in order to determine where this Point ought to be, we obferve, that though the Motion of this Ball was fuppofed to be a fimple Motion, yet its Determination in the Line AB, with refpect to the Superficies of the Water, is really compofed of two Determinations, one of which caules it to move from the Left to the Right, the Length contained between the Lines AF and BG, which are perpendicular to the Superficies of the Water, that is, the Length of the Line AG or FB; the other Determination makes it defcend downwards the Length contained between the two Parallels AG, CD, that is, the Length of the Line AF. We muft further

[^18]> neareft to us. But for the real and manifeft Refraction of perpendicular Rays, which is made in Ifland Chryfal, See Newt. Opt. pag. 229. 2. Is made only in the Superficies) It is otherwife in the Reflexion and Refraction of Light. See belom, Chap, xxvii. Att. $35 \cdot 37$.

Chap. 15. of Natural Philosophy.

obferve, that the Superficies of the Water refifts the Determination downwards, which confequently mult be altered; I but it make's no Refiftance at all to the Determination from Left to Right, wherefore this will not be at all altered, but the Ball which moved in this manner the Length FB during the Minute which it took up in going from the Circumference of the Circle to the Center, ought to move twice this Length in two Minutes, in going from the Center to the Circumference: Let BL therefore be taken equal to twice BF, and the Line ELM drawn perpendicular to CD, and the Ball ought to be found fomewhere in this Line, two Minutes after it has parted from B; but it was before faid, that it ought at the fame time to be in the Circumference of the Circle alfo; whence we conclude, that the Ball will be at the Tame time in this Line, and alro in the Circumference of the Circle ; that is, in the Point M , where they interfect each other. So that inftead of continuing its Courfe in the Line AB produced to N , it will be carried along the Line BM, which is from the Perpendicular, 2 and the Refraction will be meafured by the Angle MBN. From what has been faid, it is thain, that if the lower Medium had refifted the Ball lefs thain the upper one, the Refraction ought to have been contrary, that is, to the Perpendicular. the Difference of the Refiftance of the two Mediums, and the Velocicy of the Ball, let us now fuppofe, that the Ball, in order to go to the Point B, comes from ano-
12. The diffiruly ther is when the Ball falls very objique. ther Point more diftant from the Point P than was fuppofed in the former Example, fo that the Line FB which is the Meafure of the Determination towards the right Hand be longer than half the Radius of the Circle, and confequently the Line BL, which is twice as long, be longer than the whole Radius; it ought to follow, according to the foregoing Reafoning, that the Line ELM will fall without the Circle, and not interfect it at all; And fo our

1. But it makes no Refifance) But it does refift that Determination alfo, as it enters; for the Ball in entring, ftrikes or rubs againft the farther part of the Hole which it.enters into: for which reafon, and becaufe the Motion of the Ball is afterwards perpetually retarded as it paffes through the Water which refilts it, thisInftance is not fufficiently accommodated to explain accurately and
mathematically the Nature of Refraction.
2. And the Refraction will be meafured) It is a right Obfer-
vation of Cartes here, that Tab. III. Refiaction zaiverfally and Fig. 2. in all Incidencies is to be meafured by the Proportion of the Lines AG and OM, and not by the Angles $A B C$, and $H B M$ ol NBM. See Cartes's Dioptr. Chap.2.Art. 7.

Argument feems to conclude, that the Ball ought to be in two different Places at the fame time, viz. in this Line, and in the Circumference of the Circle; which is impoffible.
13. It muft be confeffed, that here is fome Miftake,

1. That the Pofition of hard Bodies put into Liquors is an Effect of Motion.
2. That the Superficies of a beavy $L i$ quor contained in a VefSel, ought to be level.

Tab. III.
Fig. 4. whencefoever it arifes; for every Argument that leads to ane Impoffibility, is defective either as to the Form or as to the Matter of it. But let us not imagine that there is any Fault in the Form of this Argument which feems to conclude in an Impoffibility; let us rather fay, that it being conclufive, it is a certain Sign, that the Fault was in fome of the Suppofitions that were made. And fo indeed it was, for we fuppofed that the Ball, when it had loft half of its Motion by meeting the Superficies of the Water, would enter into it, though it fell never fo oblique, which is not fo. For we fee by Experience in a SeaFight, that Cannon-Balls which are fhot too oblique upon the Water, are reflected by the Superficies of the Sea, and kill the Soldiers upon the Decks of the oppofite Ships. And we obferve the fame Thing in Stones which Chilldren make Ducks and Drakes with in the Water.

C H A P. XVI.

Of hard Bodies put into Liquors.

AL L that can be faid of the Place which a Body ought to poffers in any Liquor according as it is more or lefs heavy, does properly belong to the Doctrine of Motion. For thefe Bodies are in Motion when they fink in the Liquor, and they are in Motion alfo when they rife from the Bottom, to the Superficies.
2. That we may not pars by any Thing therefore which may be of ufe afterwards, let ABCD be a Tub filled with Water, and fuppofe firft, that this Water is upon the Level, that is, no one Part of the Surface AD higher than another ; then imagining it to be divided into a great many Columns, perpendicular to the Bottom of the Tub, let us examine one of thefe Columns, as EFGH. And firt it is obfervable, that though this whole Column endeavours to fink down, yet it cannot, becaufe the fmaller Columns, into which this may be fubdivided, muft bend at the Bottom of the Veffel before they can return
upwards, but that they cannot do, becaufe they meet and fupport each other, and are alfo fupported by the little Colunns on all Sides of them, which tend downwards likewife, and with equal Force. So that the Water in the Tub ought to continue ${ }^{1}$ upon the Level, and to remain in perfect Reft and Equilibrio, if there be nothing elfe but its own Weight to move or fhake it. Whence it is manifert, that if we fuppofe the Water in the Tub to be higher in one Place than in another, that it cannot continue fo, becaufe thofe little Columns of Water which aré longer than the other, will have more Powier to defcend than they, and will never leave crouding them up, till the Surface of the Liquor is come to a Level, when they will all be in aquilibrio with each other. Therefore when a heavy Liquor is contained in any Veffel, we are to think that its Weight difpofes the Surface of it to be upon the Level, and that it will continue fo, unlefs altered by fome foreign Caufe.
3. Let us confider further, that if there be put into the Water in this Tub any hard Body, fuch as I, of equal Gravity with the Water; as its Weight would have neither more nor lefs Effect than the Water whofe Place it poffeffes; there is no Reafon why any Alteration fhould be made in the Column EFGH, fo that the Body I muft of it. continue where it was placed.
4. But if we imagine this Body to be heavier, by an Ounce, fuppofe, than a Quantity of Water of equal Bulk, it is manifeft then, that all the Columns of Water will not be in aquilibrio, but the Body will go to the Bottom, not with its ordinary Weight, but only with the Difference betwixt that and the Weight of a Quantity of Water of equal Bulk, that is, with the Force of an Ounce weight.
5. But fince Water was here taken only for an Example, and the Reafoning holds the fame, when applied to any other heavy Liquor; we may affirm in general, that the real of of in fupporting a heavy Body, we ought only to feel the Excefs of its Weight above that of an equal Bulk of the Liquer in which it is. Hence it is, that we are not furprifed to find by Experience, that a pretty lufty young Man who weighs a Hundred and thirty eight Pound in the Air, does not weigh above eight Ounces in the Water. But we have before fhown, by many Experiments,
I. Upon the Level) That is, as to 1 the Sphrrical Superficies of the
enfe. But in reality it is part of Senfe. But in reality it is part of \mid Earth.
that the Air itfelf is heary, wherefore we do not by our Senfes feel the true Weight of a Body in the Air, but only the Difference of the Weight of the Body and of the Air; and confequently, unlefis we are under any particular Indifpofition, we ought never to feel our felves lighter, but only when the Air is heavier.
6. That a 6. It is evident, that if the Body I, juft now mentionZ3oty whith ed, had been fuppoied lighter than that Bulk of Water,
istiberer bew is lighter than the Liquor, nught to rife sip, and that with fome
Force.
Tab. III.
Fig. $4 \cdot$ whofe Place it poffeffes; the Column EFGH would not be heavy enough to be in aquilibrio with the reft of the Water in the Tub; wherefore this Column will be forced to give way, till the Body I be got up to the Surface AD , beneath which, fo much of it will remain, as poffeffes the Flace of a Quaitity of Water equal in Weight to the Body.
7. How to 7. From what has been faid, we may draw two very Find whetber important and ufeful Inferences. Firft, Tbat if a Body
a bard Body a hard Body woighs more or lefs than ank equal Bulk of any Ligzor. put into any Liquor, finks to th? Bottom, it is certain that Body is beavier, than an equal Bulk of the Liquor, but if it fwims on the Top, it is ans infallible Sign, that it is lighter.
8. The may to
8. Sccondly, If a hard Body be put into two Liquors, find which is the beavieft of two Li quors. and rifes in the one, but finks in the other, the former mutt neceffarily be heavier than the latter. *
9. This

[^19]ter. Becaufe then the Column EFGH is heavier than the Columns which furround it. See Art. 4. of this Chap.
4. A Body, fuch as I, beavier thanz V Vater, ought to have juft fo much V Visht in V Vater, as it exceeds in VVeight an eqsal Butk of VVater. For lince the Body A poffeffes the Place of an equal Bulk of Water in the Column EFGH; it is manifeft, that by how much that Body exceeds that equal Buik of Water in Weight, by juft fo much is that Column heavier than it was before. See $A r t .4$. of this Chapter, and Archimedes of Bodies pret into Flreids. Prop: 7 .

Herice, fince the Proportion of Weight betwixt Goid and Water is knawn, ciold may be proved and valued, by weighing it in Water. See Boyle's Hydroftatick Medicine.
5. Ary Body frech as I, put inte VVater, is not anily preffed do ponupards by the incumbent Water, but is alfo preffed upwards by the W'ater that is under it . T'his is evident from the finfl Propofition. See allo Buyle's Hydryfaticks, Paradori 3 .
6. Thes

Chap. 18. of Natural Philosophy.

9. This being fo, if we examine the Opinion of fome Philofophers, viz. that there are certain Places natural to all Bodies where they of themfelves continue at reft, and in rome Phi foine Philofopkers. have no Tendency to go out of them, and that this is the
10. The heavieft Body of all, fach as I, a Cube of Gold, if it be put So deep into the VVater, that the Depth of the VVater from EH to the lowoer part of that Cube be twenty times as much as the Thicknefs of I is, that C_{z} be will be fo preffed uppwoards by the VVater that is under it, that, if the incumbent VVater EIH mere removed, it mould not fink. For fince the Cube I is juft uf the fame Weight as the Water which reaches from EH to the Bottom of the Cube ; all which Water we now fuppofe to be removed; it is evident, that the Column FIG in this Cafe, is in aquilibrio with the Columns which furround it, and therefore the Cube I cannot fink. See Hydroftatick Pa rad. 1 I.
11. A Body, fuch as I, lighter than VVater, let it be preffed never so much by the iuccumbent VVater, ought to rife notwithffanding. For in this Cafe, the Column EFGH is lighter than the Columns of Water which furround it. See Art 6. of this Chap.
12. VVhen a light Body is rifen to the Top of the VVater, fo much of it ouybt to remain under the VVater, as is equal to a Bulk of VVater woeighing as much as the mote Body. This is the Fifth Propofition of Archimedes concerning Bodies put into Tab.III. Fhaids, and is eafily deFig. 4. monitrated from what has been already faid. For it is manifeft, that when the lower Part of the Body fwimming in the Water, is funk in this Proportion, the whole Column EFGH is in aquilibrio with the Columns that furround it ; and if the fame Body be funk deeper, this Column will be lighter than the reft of the Columns; if not fo deap, it will be heavier.
13. In cevery Body that is lishter than V Vater, the Proportion of its V Voight to the VVeight of VVater, is as that part of it under the VVater to the whole Body. This Propofition follows from the preceeding one, and is more at large demonftrated by Archimedes, Book II. Prop. of Bodies put into Fluids.
14. All VVater preffes upon the Bodies under it, in propurtion to its perpendicular Height, and not in proportion to its Breadth. This noble Propofition is at large demonftrated in my Notes upori Cbap. 10. Art. 11.
15. This Preffure atts wpon $\mathcal{B o d i e s}$ immerfed in the V Vater, not only. ons the Tip, but on the Bottom and the Sides, every may equally. This Propofition follows from the foregoing one, and is demonftrated from the Nature of Water, whereby every Preflure is propagated equally and entire every way. Nee alfo Boyl's Hydrof. Paradox 7.
16. Hence, a wooden Trencher pus zander VVater, immediately rifes unp; though there be a much greater 2 uantity of VVater lying above it, thand is under it; neitber is there any fuch Thing in Nature as Levity, to lift it up. This Propofition you have demonftrated in my Notes on Chap. X. Art. 11 . Coroll. 3.
17. However, If the woorien, Treriber be exacily fitted to the Vividto. of the Veffel, fo that no Water cant zet in between it and the Sides of the, $V \mathrm{Cf}$ el, mhich by communicating its? Weight to the Water beneath, might force the Trencher up; or if the Trencher goes so clofe to the Bottom of the Veffel, that no VVater can get ine: betroixt it and the Bottom, then the Trencher willnot rife at all. Wi hich is a manifeft Proof, that there is no fuch Thing as Levity in Nature. See the finie Place.

It is very hard to prove this Propofition by Experiments, becaufe Water is fo apt to wet and rus all aboric. But I have tried it with Quickfilver, which will nor wer moft Jiodies ;-. for after I had gently. pus. a Piece of Money on the Bottom of a Veflel full of Quickfilver; the Money did not rife up; but if I Thaked the Veffel, or lifted up the Money ever fol litale with a Needle, thar fome of the Quickfilver mighe get betwixt the Money and the Bottom of the Veffel, the Money was immediately raifed up, fcruple to afffrm, that this is as grofs an Eirrour, as, it would be in a Man, who, feeing a large Cannon in one Scale, and Seven-or eight thoutand Pound Weight in the other, fhould affirm, that the Cannon did not weigh any Thing in this Place, becaure he can eafily lift it up or down: For this Opinion of there Philofophers' is founded upon this Experiment, that in drawing W ater out of a W Cll, we do not begin to feel the Weight of that with which the Bucket is filled, till it comes into the Air; whereas they ought to think, that as the Cannon is always heavy, and we could not eafily lift it, but for the Weight which keeps it in aquilibrio; fo alfo the Water weighs always the fame; and the Reafon why we don't perceive its Weight when the Bucket is under Water in the Well, is, becaufe we are affifted by the reft of the Water in the Well, which is in aquilibrio with that in the Bucket.
14. It is poffible for Water to deprefs and fink a Body lightTab. I. cr than it felf. This may be Fig. 4. done by gently putting the Syphon ABCD, filled with Oyl as high as $A B C$, into theWater till the fhorter Arm $A B$ be under Water: for then the Water preffing upon the Superficies AB, will lift up the Oyl fo much the higher towards D , as the Syphon is let down deeper into it. And from hence alfo it is as clear as the Sun at Noon-Day, that there is no fuch Thing as Levity in Nature. But left the Experiment Should fail
by the Oyl's mixing with the Water, it is more proper to ufe a Syphon with fmaller Arms. See Boyle's 8th Hydroftatick Paradox.
15. Solikewife, it may be, that Oyl having Water on each side of it may not rife up, viz. thus, if, when the Syphon is filled with Water up to $A B C$, Oyl be poured upon the Water in each Arm, and Water be again poured upon that oil to ballance the Preflure of the lower Water upwards. See Boyle's Hydroftaticks, Paradox 9.

C H A P. XVII.

Of Accretion, Diminution, and Alteration.

AS Arifotle in treating of local Motion confiders alfo the other Changes that happen to natural Bodies, fuch as Accretion, Diminution and Alteration, which he cretion and calls Motion likewife; fo we after his Example, thall not wholly neglect thefe, but fhow that it was not without Reafon, that he brought them under this Head, fince they are indeed the Effects of local Motion. All the World agree, that by Accretion and Dinninution is meant the fenfible Increafe or Decreafe of the proper Subitance of a Body; Thus we are fure, that the Trunk of a Tree is increafed when we fee it bigger than it was before.
2. Since we obferve, that Trees, and in general all Bodies ftand in need of Nourifhment, to make them increafe, and that it is impoffible to conceive how a Body fhould increafe and become bigger without fome Parts being added to its former Bignefs; this is a convincing Proof, that every Body which increafes, receives fome Augmentation of Matter. And as this is true of a Body which increafes, fo may we alro affirm, that every Body which decreafes, lofes fome of the Matter which it had before.
3. However this does not hinder us from making a 3. That In difference betwixt Increafe and Rarcfaction; and betwixt creafs is difDecreafe and Condenfations: For the Matter which is ad- ferent from Rarefaction ded tu a Body increafing, and that which is taken from a Body decreafing, is looked upon as belonging to it, and as part of its proper Subftance; but, as was before obferved, the Matter which enters into the Pores of a Body to rarify it, or that which gets out of its Pores, that it may be condenfed, is looked upon as Matter that does not belong to it.
4. The Idea we have of the Accretion of a Tree, be- 4. That there ing different from the Idea we have of its being tranf- is a great planted, it muft be owned, that Ariftotle had Reafon to deal of diifmake a difference betwixt Accretion and local Motions. twixt AccreHowever, as a Tree cannot be tranflanted, but by the $\begin{gathered}\text { tion izia a } \\ \text { Body } \\ \text { and }\end{gathered}$ local Motion of its whole Body, fo we cannot conceive localy, Motion how it fhould increafe but by the local Motion and of it.

Union of the fmal Particles which contribute to the increafing it.
5. How Bociles are altered.
5. When a Body neither increafes nor decreafes, but is fomewhat changed; if this Change be not fo great that we do not at all know it; we call it, as was faid before, Alteration; bence it is eafy to fee, that there can be no Alteration without local Motion: For how can there be any Change in a Body, if none of the Parts which compofe it, and upon the particular Order of which its Nature depends, have changed their Situation? This being fo, it is very evident, that there muft be an Alteration in a Bo$d y$, when the fenfible or infenfible Particles of which it is compofed, are put out of their Order, or any great Change made in their Figure: Or it may alfo fuffer an Alteration, by the Acquilition of fome new Particles, or by the Lofs of fome of its old ones; all which cannot be without local Motion: Thus, when there is an Alteration in a bruifed Apple, we can eafily imagine that many of its Particles have been forced to change their Situation, and perhaps fome of them have allo changed their Fi gure. If after this, any one ftill doubts whether there may not be fome kind of Alteration in which there is fomething elfe befides what proceeds from local Motion, I think he cannot be fatisfied better, than by what we are now going to fay of Forms.

C H A P. XVIII.

Of $F O R M S$.

T.Thastorns sught ro be tristed of by. themfelves.

FORMS are a Subject that we cannot hope to treat of, as we have done of Matter. For fince Matter is a common Subflratum, which, when once we underftand what it is in 'Nood, we cannot at the fame time but underftand what it is in Fire, and in every Thing elfe; one fingle Reflection is of it felf fufficient to gain the Knowledge of it. But becaufe the Form of any Thing, is that which makes it to be that particular Thing, and diftinguifhes if from every Thing elfe; it does not follow, that if we know the Form of Wood, we therefore know the Form of Fire, or any Thing elfe. Wherefore if we would fucceed herein, and fay fomething more than ordinary, we mult defcend to Particulars, notwithftanding the

Chap. 18. of Natural Philosophy.

Cuftom of Philofophers, who feldom do fo, but for the moft part content themfelves with propoling abundance of loofe Queftions, which we may look upon as fuperfluous, and from which we can gain no Advantage.
2. However, I do not affirm, that it is an ufelefs Enquiry, if it thould be asked here, as ufually it is, whether there be any fuch Things as Subfantial Forms, that is, Forms which are real Subftazces; and confequently have a diftinct Exitence from that of Matter. But thus much at leaft, I may ventuie to affirm, that the Solution of this Difficulty, depends upon the particular Knowiedge of the Things. The Inftance of the rational Soul proves nothing here; for though we know that this is a Subitance really diftinct from the Body, to which it is united, and that it does not at all depend upon it for its Exiftence, yot we can conclude nothing from hence as to the Forms of other Beings which are purely material.
3. But if we confider this Matter more clofely; though I acknowledge, as all the World do, that the Soul is that which particularly makes a Man to be a Man; and confequently that it is truly the Form of a bumazze Body as bumane; yet I can't agree, that it is, properly fpeaking, the Form of all that which is fenfible, and is called the Body and confidered fimply as a Body, any more than it is the Form of any of its Parts, conlidered as different from each other: For in this Senfe, every one of them has its particular Form fo clofely connected with the Matter of it, that it continues as long as the Part fubfiits, even after the Soul is feparated from the Body. And indeed after fuch Separation, every part appears the fame, as it did immediately before. For, that which was Fleth, for Inftance, is Fielh ftill, and that which was Bone, is Bone ftill, and fo of the reft.
4. The Caufe of many People's Miftake, who confound the Properties of the Body with thofe of the Soul, is this; that a dead Bodv, when the Soul is feparated from it, is uncapable of many Functions which we obferved in it before, fuch as moving it felf, Refpitation, Nourifhment, evc. fo that they perfwade themfelves that all thefe Things depend upon the Soul, and would not have ceaied in the Body, if the Soul had not departed from it: Whereas we ought rather to think, that the continuing of the Soul in the Body, depends in fome meafure upon the Difpofition of the Body to perform thefe Functions, and that the Separation is a Confequence of there Functions noi being able to be perfurmed. For every Day's

$$
\mathrm{H}_{4}
$$

4. An Erroy anomif: Phi.-
5. That the rational Sorel is not the Form of the hxon, whe Bory as a Bodj.

Experience fhows us, that Dexth never comes, nor is the Soul ever feparated from the Body, till it is fome way hurt, or by fome Mcans fpoiled and corrupted. And we have no Example of the Soul's being feparated from a found and perfect Body, and that this Body did not begin to be corrupted, till after, and becaure the Soul was feparated from it.

- 5. It would therefore be unreafonable, upon the fingle Inftance of the Rational Soul, which is very different from the common Forms of Bodies, and without firlt knowing the particular Form of all Kinds of Bodies, to affirm here raihly, that there are fubftantial Forms in Things merely corporeal; however we may venture fafely and confidently to affert, that there are fome Forms which are ofSeratial, that is, fuch as belong neceffarily to their Subjects: Thus to be liquid is effential to Water, becaufe there is no Water which is not Liquid; we may alfo affirm, that there are other Forms which are only accidental, becaufe they fo belong to the Subject, that it can exift without them, and not ceafe to be what it was. Thus Coldnefs is an accidental Form of Water, becaufe Water would still be Water, if it was made hot.

6. That it is 6. It might very eafily be, that Ariftotle might ac${ }_{t h a t}^{n o t ~ A r i f t o t l e ~ k n o w l e d g e ~ e f f e n t i a l ~ F o r m s ~ a n d ~ n o t ~ f u b f t a n t i a l ~ F o r m i s ; ~ f o r ~}$ did alloso of it is certain, that the Greck Word which he ufes, may fubficitial farms.
7. Th. $2 t$ Artifcial Eomusare alfo natitural. as well or better fignify the one than the other.
8. Forms are commonly diftinguifhed into Natural and Artificial: They call thofe Natural, which belong to the Subject without the Affiftance of Men; Thus a Portion of Matter receives the Form of Marble in the Bowels of the Earth. Artificial Forms are thofe that proceed from Art; thus the Form of a Clock is called Artificial, becaufe it is owing to the Labour of the Clock-maker. I agree, that if the Name had been given with regard only to the Caufes by which they were produced, it would have been reafonable to call the one Natural, and the other Artificial; but fince it is inferred from thence, that the Natural Forms are different from the Artificial Forms, and that they act from internal Principles, which are very different from thofe of Artificial Forms ; there lies the Miftake. For Artificial Forms are as natural as the Natural Forms themfelves, becaufe they proceed from Caufes purely natural; and Art, as was faid before, does nothing elfe but apply active Things to paffive Ones.
9. It is much more reafonable to divide Forms into 8. The DiviSimple and Compound. Simple Forms are thofe of fimple fino fof Forms Beings, that-is, of Beings that are capable of but a and comfew Properties; and compound Forms are thofe of com- poanded. pound Beings, that is, Beings that are capable of a great many Properties. For Inftance, the Form of a hard Body, whatever that Form may be, is a fimple Form compared with the Form of Wood, which, with refpect to the former, may be faid to be compounded; becaufe a hard Body, as bard, is not capable of fo many Properties as Wood.
10. This Obfervation is more remarkable than one 9. That Jenwould imagine. For it is evident, that fimple Things may ple Forms be known, when we don't at all know thofe that are com- ungt to be pounded of them : Whereas we cannot know thofe that firf. are compounded, but we mut have a dinftinct Knowledge of thofe Things which go towards their Compofition. Wherefore in order to underftand particularly the Forms of Bodies, it is neceffary that we firft begin with thofe that are fimple, and afterwards come to thofe that are compounded.

C H A P. XIX.

Of Elements according to the Opinion of the Antients.

IF we once have a clear Notion of what Philofophers i. What Ph:mean by the Word Element, we cannot doubt, but lofophers that the Forms of Elements are the moft fimple of all. mean by EIt is to be obferved therefore, that the principal Defign of Philofophers is to explain how every Thing is generated, in fuch a manner as to let us know the different States through which fuch Things pafs from their firft Principles till they are entirely compleat, and in that perfect State in which we fee them. And in order to this, fince they find by Experience, that every Thing is not made indifferently out of another, and that Srones, for Inftance, and Marble are not proper to be converted into Flefh, neither will they ferve to nourifh it and make it grow; fo they judge by proportion, that all forts of Bodies are not compounded of Principles alone, connested together in the moft fimple manner poffible; but fome very fimple

Things only, of the Mixture of which all other Things are afterwards compofed. Thefe very fimple Things, whatever they be, which thus arife from the firit Determination and Connexion of Principles, are what Philofophers call Elements: So that Elements differ from Principles in this, that a Principle, fuch as Matter, for Example, is, as it were, an incompleat and undetermined Thing, whereas an Element, is a compleat aud deternined Thing.
2. That there ought to be more Elements thand one, and what the Opinion of the Antients zoas concerning Elements.
2. This being explained, there muft, without doubt, be more than one Element, otherwife there would be but one uniform Simplicity in Nature, and no compounded Things. But Philofophers have not agreed what is meant by Element, the Reafon of which, is, becaufe they have not fo much inquired into the Nature of Tbings thempelves as into the Senfations which they areapt to raife in us. Thus fome Philofophers who confidered the Sente of Seeing only, have afferted that Light and Dark, Tranfparent and Opacous were the Elements of Things. And others, who referred every Thing to Feeling, have pretended that Hard and Liquid, or Hot and Cold were the Elements.
3. How A- 3. Arifotle may be placed amongtt the Number of thefe rifotle made Four Elements.
4. What Names be save to them. laft, though he went in a Way fomewhat different from theirs. He confidered firft, the principal Qualities that come under the Senfe of Feeling, fuch as Heat, Cold, Drynefs or Hardnefs, and Moiltnefs or Liquidnefs: And after he had obferved that two of thefe Qualities might meet in the fame Subject, and that the Four might be coupled four different Ways, he compofed four Elements; of which the Firft is Cold and Dry, the Second is Cold and Moj f, the Third, Hot and Mojf, and the Fourth, Hot and $D_{r y}$.
4. Then, in order to give Names to them, he examined what thofe Things in. Nature were, in which one Element feemed to prevail, or in which its Qualities were moft fenfible. Thus, imagining the Earth to be both the coldeft and drieft Thing in the World, he called his Firfl Element, Eartb. So likewife, becaufe he thought that Water was the coldeft and moifteft Thing, he called his Secoond Element, Water. Further, imagining alfo, that there is nothing more moift and hot than Air, he called his-Third Element, Air ; And laftly, not doubting, but that Fire is the hotteft and dryeft Thing in the World, he called his Fourth Elenzent, Fire.
5. Ariflotle's making ufe of Names which were before 5. That thefe ufed to fignify uther Things, hath given occafion to many, bave been who did not rightly apprehend his Meaning, weakly to by fome. believe, that This Earth which we inhabit, This Water which we drink, This Air which we breathe, and This Fire which wee kindle, are the Four Elements. But this will appear a very grofs Miftake, to any one who confiders, that the Name Element is given only to the mooft fimple Body, whereas the four now mentioned are the moft compounded of any we know.
6. But if we fuppofe the Elements of Arifotle to be as fimple as he makes them, and if we compare them with thofe which other Philofophers have attempted to introduce; we do not find any Advantage they have, why we Thould prefer them above others; becaufe in this Matter we have no more reafon to confider the Qualities of Feeling, than thole of Seeing, or any other Senfe. But neither the one nor the other ought to be allowed, and that for thefe two Reafons, which feem to me very ftrong. The Firft is, That in order to eftablifh Elements throughly, it ought to be upon the Deterninations which may happen to Matter abfolutely and in it felf, and not upon the Relations which the different Forms of which it is capable may have to our Faculties to raife Senfation. The Second is, that all theefe pretended Elements being determined by fenfible Qualities, of which we have no clear Notion; it is impoffible, but that there muft remain fome Obfcurity, into which no Philofopher can fo far pene-trate as to be able to fee what will arife from their Mixture; in the fame manner as a Phyfician cannot tell what is the Vertue of a Medicine compofed of many fimple ones, of which he has only a confufed Knowledge.

C H A P. XX. Of the Elements of the Chymifts.

ェ. The Method of the Chymifts, in finding out of Elenrents.

ICannot tell whether thefe or fuch like Reafons, induced the Chymifts to reject thofe Elements which the Antients would have introduced; thus much is certain, that they have propofed others very different. And in order to eftablifh them, as they profefs an Art which confifts principally in ufing Fire after different manners, to feparate as much as is poffible, the different Parts of which different Bodies are compofed, they have pretended, that this Refolution is the only Way to find out what are the true Elements which Nature makes ufe of in the Compofition of 'Bodies; as the taking a Machine to Pieces, is the only way to find out what it is compofed of.
2. What the 2. Thus, in working upon certain Bodies, upon Wine, Mercury of the Chymifts is. fuppofe, they put a large Quantity of it into an Alembick, and by means of. Fire, make fome of its Parts exhale, which being then condenfed by the Cold, fall down into another Veffel in the Form of a ftrong, fubtil, and penetrating Liquor, to which they are pleafed to give the Name of Mercury, Spirit, or Aqua-vita.
3. What it 3. After this, continuing the Alembick upon the Fire, is that they sall Phlecm cand Suiphor. they make it diftill a Liquor which has no Tafte, and this they call Pblegm; and fo they go on till there remains nothing in the Alembick, but a glutinous Subftance like Honey. Then they put this glutinous Subftance into a Retort, and with Fire they make it again diftill a Pblegm like the former, and then an acid Liquor which they call Mercury alfo; and after that, another Liquor not quite fo fuid, fomewhat like Oil, and which is inflammable like it, to which they give the Name, Sulphur.
4. What it is 4. Laflly, They take that which remains in the Retort, that they call Caput Mortuum, and Salt. and which prefently grows dry, and burn it, and put the Afhes into an Earthern Pot or Pan, with a certain Quantity of Water, which in a thort time becomes Salt, then ftraining it off clear into another Velfel, there remains in the Pot a kind of dufty infipid Earth, which they call Caput mortuan or Terra damnata; then with a gentle Fire, they make the clear Water which is in the other Veffel to evaporate intirely, and after that, there remains at the

Bottom of the Veffel, a hard brittle Body which is very like Salt, and therefore they call it Salt.
5. Hence they conclude, that thefe five Subftances, viz. Mercury, Pblegm, Sulpbur, Salt and Caput mortuum, are the Elements of Wine: And becaufe whatever they can extract out of any other Subject refembles one or other of thefe, therefore they conclude in general, that thefe Things, are the only and the true Elements of all the mixed Bodies which are in the World, and that all the Variety that we fee is owing to the different Mixture of thefe.
6. I fhould think it a great Piece of Injutice not to give the Chymifts that Commendation which is due to their Induftry and laborious Application. Without doubt the whole World, and the Philofophers particularly, are very much obliged to them for the Pains they have taken, and which they continue to take, to make a great Number of Experiments, whereby they come to the Know. ledge of diverfe Properties of many different Things. This gives them opportunity to find out and difcover the Na ture of Things, and at the fame time, ferves for a Rule to try the Truth of their Principles by, and to juftify their Reafoning and the Confequerices which they draw from thence. However I think their manner of treating of Philofophy is not fatisfactory, nor their Elements fuch as ought to be allowed.
7. Though the exceffive Commendations which they 7.The Ergive themfelves, and with which their Books are filled, as rowr of the if they were the only Philofophers, and the Secrets of Chymiffs. Nature depofited in their Hands alone; and though the large Promifes they make, which for the moft are falfe and vain, have rendred them almoft univerfally contemptible to the World; and the obfcure Terms, and almoft perpetual Equivocations which they ufe, have made them ridiculous alfo to a great many: Yet I do not depart from their Opinions upon this Account. For as to thefe exceffive Commendations, and vain Promifes, they are only perfonal Faults which any one may eafily lay afide, and which fome Chymifts of my Acquaintance are entirely free from; who far from being vain and proud like others, are on the contrary, fo modeft, that if they had nothing elfe to recommend them, they ought upon this Account to be placed in the Rank of Gentlemen. And as to the Obfcurity of their Terms, fome of which are authorized by Cuftom, that is eafily difperfed, if we give but our felves the Trouble to explain them.
8. That they cannot get toaether all the -Parts of a mixed Body; and thofe zobich they doget together are altered. .
8. That which makes me not to approve of the Method of the Chymifts, is, firf, becaufe it is defective; for it is certain, that let them take never fo much Pains, they can only get together the fenfible Parts of which a Body is compoled: For as to thofe which refemble that fubtil Matter, the Exiftence of which, we demonftrated above, and which go to the Compofition of a great many Things, thefe elcape all their Pains. But further, that which they give the Name of Principle to, cannot but be very much altered, and very different from what it was in the Mixture: For it is impoffible, but that the different Parts which they extract, when they are put in Agitation by the Fire, and dafhed one againit another, muft be changed both in their Figure and in their Nature. And this is confirmed by Experience, for if all the Parts into which the Mixture is refolved, be mixed together again, the Refult will not be at all like the formes Mixture.
9. That, atlowing of their Opinisn, there oxuybt Io be more thans, five Elements.
9. To this may be added, that the Chymifts deceive themfelves, in faying, that there are but five Elements: For allowing of their Method, and the Manner upon which it is founded, we muft fay, that there is a great Number, yea fo great, that it is impolfible to know them all. Thus there are a great many Sorts of Mercury, Sulphur, Salt, \&xc. But to mention Salt only,s we find almoft as many different Salts, as there are different Mixtures. For Example, That which is extracted out of an Afh-tree, is Cauftick, that is, will corrode and burn the Fleth, if applied to it; but that which is extracted from an Oak will not do fo.
10. That they have brst a confufed Notion of their - an Elements.

1o. But that which thocks me mof in the Reafoning of the Chymifes, is the Confufion that they are unwilling to get out of, and the Averfion they have to clear and diftinct Knowledge, which it is fo natural to defire. For Inftance, if we ask them what they mean by Sulpiour, they will anfwer indeed, that it is a fat inflammable Subftance; but if we go on to ask what this fat inflammable Subftance is, which they call Sulphur, and in what this Property of being Inflammable confifts, they will not only not give us any further Anfwer, which indeed is no great Matrer, becaufe they have none to give; but they will be offended at our Curiofity, and that we fhould have any Defire to be fatisfied herein: So that their Science extends no further than to give Names to Things whofe Natures they underftand not, and confequently from the Mixture of which, it is imponfible to forefee what will arife, which

Chap.20. of Natural Philosophy.

is one of the principal Conditions which we require in Elements.
II. Perhaps it will be faid here in favour of the Elements of the Chymijts, and in favour of thofe of the Arifotelians, that though we do not know diftinctly what they are in themfelves, yet we know at leaft what they are capable of, that is, the Senfations they raife in us, or the Convenience or Inconvenience we receive from them, which they think fufficient to determine what the Effect of their Mixture will be. For, fay they, we may lay down two general Rules hereupon; Firt, That if two Things Separately, are capable of producing the fame Effect, they will allo be capable of producing it when they are mixed togetber. Secondly, That if Two Things Separately, are capable of producing two contrary Effects, when they are compourded togetber, they will produce fome middle Thing between the ee two Effects. And thefe cannot be denied to be of good Ufe.
12. Though thefe Rules are for the moft part found to be true, yet it will be very wrong to truft too much to them; and I doubt not but the Chymifts themfelves will difown them; for the know very well, that he who exactly follows them, will many times form a Judgement contrary to Experience.
13. For Inftance, if we follow there two Rules ftrictly, we mutt affirm, that two Bodies which feparately are cold, ought together to make one cold Body.
14. We muft affirm, that two liquid Bodies will com- I4. II Inpofe one liquid Body.
15. That two tranjparent Liquors will compofe one 15: III I_{n-} tranfparent Liquor.
16. That two red Liquors mixed together, will make 16. IV Inone red Liquor.
17. That a Body of a Yellowi/h colour, mixed with a 17. v InBody of a Green Colour, ought to compole a Yellowiffo. fance. Green.
18. That two Things which may be feparately taken 18. vi I_{n-}, without any danger, may alfo be taken together without fiasce. any.
19. However, we know that every one of thefe are con- 19. The firf. tradicted by the following Experiments. For Example, Experiment of the contra? cold Lime, having cold Water frinkled upon it, grows $r y$. fo hot, as to be ready, to burn. Further, If Oil of $\mathrm{Vi}-$ triol and Oil of Tartar, each of which are cold, be mixed together, we fhall perceive a fudden Ebullition, and at the fame time a very fenfible Heat:
20.II. Experiment.
21. III. Experiment.
20. If Spirit of Wine and Spirit of Urine, each of which are very fluid, be mixed together, they will, in a Moment almoft, unite into a Body not at all fluid, but pretty hard.
2I. If about an Ounce of Litharge of Silver be put into a Pint of diffilled Vinogar, and boiled half a Quarter of an Hour, and if a Piece of unflacked Lime be fteeped Four and twenty Hours in a fufficient Quantity of Water (it muft be in an Earthen Por varniihed, new and clean ;) and afterwards each of thefe Liquors be ftrained, they will be very tranfparent; but when they are mixed, they will become opacous and of a very brown Colour.
22. Of Sym-
22. In the Ufe of thefe two Liquors confifts the whole pathertick Ink. Secret of the Jnk, which they call Sympathetick Ink. They write that which they would not have feen, with the firit Water, and the Writing difappears the Moment that it is dry: Then, he who receives the Letter, wipes over the Paper with a Sponge ever fo little moiftned with the other Water, and the Writing begins to appear of a reddifh Colour, tending to a Black. If thefe Waters are frefh made, and Care be taken to cover the Pot in which' the unflacked Lime is infufed, the Sponge that is moiftned need not touch the Writing, in order to make it appear, it is fufficient, if it pafs by it at a little diftance: Nay I have often feen the LimeWater fo ftrong, that when the Letter written with the firt Water was laid upon a Table, and covered with a Quire of Paper, the upper Leaf of which only was moiftned with the Second Water, the Writing grew black.
23. IV. Ex-
23. If a Piece of Brafil Wood be boiled in Water over the Fire, we fhall prefently have a Liquor pretty red; which if it be afterwards poured into a Glafs in which there is ever fo little Vinegar, this Colour will be changed into an Amber-Colour, and that fo quick, that the firft Colour will difappear entirely, as foon as the Water touches the Bottom of the Glats.
24. V. Experiment.

Chap:20. of Natural Philosophy:

25. Phyfitians order fometimes a few Drops of Spirit 25. v1. Exof Nitre or of Oil of Vitriol to be taken in Broth or fome periments other Liquor, and thefe two Things taken feparately and in proper Cafes, are good Remedies, but if they be taken together, they are Poifon. Now this Experiment, together with the foregoing ones, and many others that might have been added, do fo evidently fhow the Uncertainty of the two forementioned Rules, and confequently the little Ufe of the Elements of the Antients and of the Chymijfs, that there is no need of adding any Thing more: That which now remains to be done, is ${ }^{\circ}$ to endeavour to difcover what are the true Elements of natural Things.

C H A P. XXI:

Of the Elements of natural Things.

THAT we may act here with all poffible Caution, and eftablifh the Number of Elements, upon the Confideration of Things as they are in themfelves, without any regard to the Manner of their affecting us; we obferve, that the firft Thing that we can conceive to happen to Matter, is, that it may be divided into a great Number of Parts, all which are of a certain Figure. This Confideration is of great Importance; for if we attend ever fo little to it, we fhall be furprized at fome Perfons; who are ready to laugh, when we obferve to them; that the Parts of Matter are of a certain Figure, and yet can ferioully hearken to thofe who tell them of occult Qualities, which they cannot at all comprehend.
2. We obferve further, that befides thofe grofs Bodies, fuch as we can take notice of, with which we are furrounded; there are an infinite Number of others very fmall,

t. That me

 sminot be miffaken in afiribing Figrures to the Parts of Matter. which efcape our Sight, and which were not at all known to the Antients. Though even amongtt thefe, if we Atrictly examine them, fome may be made appear to us, fuch as the little Ecls, which Spring up almoft in a Moment, in the beft fort of Vinegar fet in the warm Sun; but it is certain, we had not known of thefe fmall Creatures to this very Day, were it not for the happy Invention of the Microfcope, in this Age. Thus, for Example, Specks of Mould upon the Covers of Books, have been long ob-ferved, and alfo, that a Mite, which is much lefs than a Grain of Sand, is an Animal, becaufe we can fee it move along; but it is fince the Invention of Microfcopes that we can with pleafure fee not only that they are fo, but that every Speck of Mould is a little Garden covered with Plants, every one of which has its Stalk, Leaves, Buds. and Flowers; and that a Mite has its Back covered with Scales, that it has three Feet on each Side, and two black Spots in the Head, which we fuppofe to be Eyes, becaufe if the Point of a Needle be put in its way, it will turn afide.
3. That the $f=$ Sodics consfint of Parts fill finaller.
3. Since fuch fmall Bodies are difcovered and feen by the Microfcope, we may reafonably judge that there are Parts incomparably lefs yet, which efcape all our Senfes, all the Induftry of Man, and exceed even our Imagination it felf. And that this may be clear by one Example ; Since a Mite walks along, it muft have Legs, and thefe Legs muft neceffarily have Foints. In order to move the Joints, there muft be Mufcles, Nerves and Tendons, and in thefe Nerves Fibres, fuch as we fee in thofe of larger Animals, or at leaft, fomething equivalent to them : And if we would carry this Confideration yet further, and fpeak of the Heart, Blood, Brain, and Animal Spirits, we fhall be quite at a Lofs, and forced to confefs, that our Imagination is unable to comprehend or reprefent the extreme Smallnefs of the leaft Parts of which a Mite is compofed. I defire that thefe Things may be well confldered, and I have purpofely urged them, to avoid the Impertinence of thofe Perfons, who ridicule every Thing propofed to them, which does not agree with their grols Notions ; and who make a Jeft of it, when we mention that fubtle Matter to them, whofe quick Motion and Smallnels makes a Paffage for it, and finds it a Place every where.
4. That Elcmentsarife from the firft Divifion that can be of Matter.
5. That we do not bere Speck of the Divififn that svas mate at the Creation of tho World.

$$
{ }_{t}^{\mathrm{a}}
$$ affured, that the fmalleft Bodies in the World, as well as the Larger, arife from the Mixture of Elements; and fince it is certain, that a fufficient Number of the fmalleif Parts, may compofe as great a Body as we will; we mult conclude, that there ought to be as many Elements, as there cari be remarkable Differences in the infenfible Parts of Matter upon their firlt Divifion,

4. Having laid down thefe Obfervations, fince we are 5. Now that my Mind may be the clearer underitood, I mult repeat the Advice which I before gave, viz. That I confider Things in their mere natural State. And though I am very well aware, that the firft Divifion of Matter was made by God, and as he pleafed, when he created the World ; yet that is not the Divifion I am here fpeaking of, becaufe I believe the Creation to be a Myftery which I cannot fearch to the Bottom of. So that I fpeak of another Divifion, which may be made agreeably to the Notions we have, and of which all the Things in the World are the Confequences.
5. Thus, confidering as far as I am able all Matter, 6.vVhat that I firft divide it in my Mind into an infinite Number of Parts very near equal, not troubling my felf what Figure mivifore is which I fupthey are of, becaufe, there may be a great many other Figures, befides Cubick which comes firt into every one's Thought, that may produce the fame Effect. After this, I fuppofe that God turns every one, of thefe little Particles, in many differant Manners, about their feveral Centers, in order that a true Divifion of them from each other may begin to be made.
6. This being fuppofed, it cannot be but that all thefe 7 . That there, Particles of Matter muft be broken where-ever they are mrif neccsfa angular, or are intangled with thofe that join to them; fo Elements. that thofe which were fuppofed before to' be very fmall, muft become ftill fmaller and fmaller, till they are got into a Spherical Figure. Thus we have two Sorts of Matter determined, which we ought to account the two firlt Elements. And of there two we here call that which confints. of the very fine Duft which comes off from thofe Particles, which are not quite fo fmall, when they are turned round, the firft Element. And thefe Particles thus made round, we call the Second Element. And becaufe it may be, that fome of the fmall Parts of Matter, either fingly or united together, may continue-in irregular and confufed Figures, not fo proper for Motion, we take them for the tbird Element, and join them to the other two.
7. As to the chief Properties of thefe three Elements, 8. The Proit is to be obferved, that it is no Contradiction to fuppofe perties of E them to be changed from one Sort to another: Thus the Particles of the Third Element may fometimes be made round, and acquire the Form of the Second. And thofe of the Second and Third may be broken, and fo converted into the Firft. But none of thefe three Elements will better preferve their Form than the Second, becaufe it is more folid, and the Spherical Figure, which it is of, wlll allow it to move about it. felf, without being intangled with the Particles about it. On the contrary', none are fo eafily changed as the Firft, becaufe its Particles moving ${ }^{1}$ very quick and being very fubtle, they cannot refift the Shock of the Particles 'belonging to the other Elements; when they
meet with them, but are forced at all times to fuit their Figures to thofe of the Places through which they pafs, and where their Motion carries them.
8. The Properties of the Firf. than either of the other Two, for though all the three Elements, were at the Beginning equally moved by the Firft Mover, yet it muft afterwards happen, that the firft Element having oftentimes met with other Bodies which relifted it, and which it could not move, will be reflected back, without lofing any of its own Motion; whereas the other Elements cannot meet this, but they will move it, and fo increafe its Motion by diminifhing their own.
9. How the Firfle Elcment acquires greatcr Velocity than the other Two.
where they are, and get forward; and fo having a Motion compounded of their own Motion, and of that of the Parts which follow them and prefs upon them, they; will acquire a greater Velocity than the Parts of the Second Element which force them on. In the fame mancond Element which force them on. In the famre man-
ner as the Air contained in a Pair of Bellows goes out with much greater Velocity, thar the Sides of the Bel-
lows approach each other, and which by their approachwith much greater Velocity, than the Sides of the Bel-
lows approach each other, and which by their approaching, pulh it, and make it to go out.
1r. Why we do not give proper Names to theje Elements.

- 10. And fince the Firft Element is often forced to run into thore little Intervals which are between the fmall. Globes of the Second Element, it mult neceffarily be, that many of its Parts being compreffed, will leave the Place
II. I would have it obferved by the way, that I might, after the Example of Arijtotle, give Names to the three forementioned Elements, from the Things which partake moft of them: Thus, I might give the Name Fire to the Firft Element, Air to the Second, and Earth to the Third. Bit befides that this would be to act contrary to Order, becaufe I have not yet proved, that Fire is for the moft part compofed of the Firft Element, Air of the Secondy and Earth of the Third; there is yet another Reafon that ought to hinder me from doing it, and that is, that I thould give Occafion for abufing them, and for having. them underfood in another Senfe than what I intend they thould be.

12. That thefo three Elcments are not imaginary.
13. Perhaps it will be here faid, that Matter was not divided in the Beginning as I have fuppofed; But tho' I agree it may be fo, this makes nothing againft me; for it fignifies very little how Matter was divided at the Beginning; and in what manner foever it was divided, there is no doubt but it is now divided into throfe three Sorts of Matter which I have defcribed; it being certain, that they necef-
farily follow from the Motion and the Divifion of the Pasts of Matter which Experience obliges us to acknowledge in the Univerfe. So that the Three Elements which I have eftablifhed, ought not to be looked upon as imaginary Things, but on the contrary, as they are very eafy to conceive, and we fee a neceffity of their Exiftence, I we cannot refonably lay afide the Ufe of them, in explaining Effects purely Material.

CHAP.

1. We cannot reafonably lay afide) Thefe three Elements are to be looked upon as fictitious and imaginary, becaufe they depend upon a Plenum every where, which we have before rejected. But concerning the trate Elements of Nature, the illuftrious Neroton thus explains himfelf.

It fee.ms probable to me, that God in the Beginning formed Matter in folid, maffy, hard, impenetrable, mozeable Particles, of fuch Sizes and Figures, and wioh fuch other Properties, and in frech Proportion to Space, as mofe conduced to the End fur which be formied them ; and that thefe Primitive Particles being Solids, are incomparably harder than any purous Bodies compounded of them ; even So very hard, as never to wear or break in Pieces: No ordinary Power being able to divide what God him Self made one in the firfl Crecition. While the Particles continue entive, they may compofe Bodies of oule and the fame Nature and Texture in all Ages: But Jhould they wear axiay or break in Pieces, the Natare of Things depending on them, woosld be changed. Water and Earth compofed of old woorn -Particles aná Fraements of Particles, would not be of the fame Nature and Texture now, woith W'ater and Eartb compofed of entire Particles in the Beginning. And therefore that Nature may be lafting, the Changes of corporeal Things are to be placed onily in the various Separations and new Affociations and Motions of the fe permanent Particles; compormd Bodies being apt to break, not in the midft of Solid Particles, but where thofe
Particles ane Particles are laill together, and only touch in a few Points. Opticks pag. 375.

Further, nothing can be more abfurd than to imagine, that all thefe furprizing Things in the Univerfe, arife and were formed our of thole three Elements of Cartes, and by
the Morion imprefled upon them in the Beginning, without any Interpofition afterwards, either of God himfelf, or any other intelligent Caufe. For according to that Hypothefis, the Followers of Cartes have not fo much as dared to attempt explaining how all Kind of Plants and Animal Budics (which are the principal and moft excellent Part of this Uuiverfe) were ar firft made, and by what Laws of Motion they were framed. How much better does the forementioned admirable Perfon exprefs himfelf.
Now all material Things feem to have been compofed of the bard and folid Particles abovementionea', varioufly affuciated in the firft Creaition by the Counfel of ant intelligent Agent. For it became him who created them: to Set them in order. And if we did. fo, 'tis unpbilofopbical to feek for any other Drigins of the World, or to pretend that it might arife out of a Chaos by the more Laws of Natzere; though being once formed, it may continue by thofo Lawo for many $A-$ \%es. For wohile Comets move in very excentrick Orbs in all mainer of PO_{o} fitions, blind Fite conld never make all the Planets move ane and the fame may in Orbs concentrick, fome inconfiderable Irregularities esicepted, which may bave rifen from the mutual AClions of Comets and Plancts upon one. mother, and will be aft to increafe, 'till this Syfem warits a Refurmation. Such a wounderful Uniformity in the Planetary Syftem muft be allomed the Effect of Choice. And fo maxtl the Uniformity in the Bonics of Animais, they having generally a right and a ieft Side foaped alike, and on either Side of their Budies, two Lengs behind, niid either two Arms, or two Leegs, or two Whines before atpont their Shorelders, and between their Shouldiers a Neck ramniag dowoil into a Back-bosue, and a Head upers it; find the the

Hemid

C H A P. XXII.

Of the Form of a Hard and of a Liquid Body, or of Hardness and Liquidity.

1. What is meant by bard and lis greid Bodies.

BECAUSE it is by means of our Senfes, that we find out the principal Differences obferved in Things; I think we cannot do hetter, than to confult them one after another, to find out in what Order the Forms of natural Bodies ought to be treated, beginning with thofe which difcover to us the feweft Properties of their Objects. And fince the Senfe of Feeling is the groffeft of all, and that which takes up the leaft Compais of our Views, I will begin my Inquiry with that. Now when we make ufe of the Senfe of Feeling, to difcover what Sort of Bodies they are which furround us, we obferve that there are fome which refift the Motion of our Hands, and will not be divided without great Difficulty; on the contrary, there are others which do not refift them at all, but are very cafily divided all ways; the firft of thefe we call hard Bodics, and the other liquid Bodies; and we fay, that a Body is fo much the harder, as there is greater Difficulty in dividing it, and another fo much the fofter, as it refifts lefs, and is divided with greater eafe. And thofe Bodies which are of a middle Sort, betwixt hard and liquid, and which refift our Feeling, or the Motion of our Hand but a little, thefe we call /oft.

Head two Eats, two Eyes, a Nofe, a Alousth, ${ }^{\text {a }}$ and a Tongue, alike fitnated. Alfo the firft Contrivance of thofe very artificial Parts of Animals, the Eyes, Ears, Brain, Mufcles, Heart, Lumgs, Midriff, Glauds, Largnx, Hands, VVings, fwimming Bladders, natural Spectacles, and other Organs of Senfe and Motion; and the Inffinct of Brzetes.and Infects can be the Efject of nothing elfe than the Wifaiom and Skill of a powerfful cverlafing Agent, who being in all Places, is more able by his VVill to more the Bodies within his bozndlefs zoniform Senforium, and thereby to form and reform the Parts of the Univerfe, than woc are by our VVill to move the Parts of our own Bodies. And yet we are not con confider the VVorld as the Borly of

God, or the Several Parts thereof as Parts of God. He is an uniform Being, void of Organs, Members or Parts, and they are his Creatures fubordinate to him, and. \int ubbervient to his VVill. And he is no more the Soul of them; than the Soul of a Man is the Soul of the Species of Things carried through the Oramens of Senfe, into the place of his Senifation, where it perceives them by means of its immediate prefence without the Intervention of any Third Thing. The Organs of Senfe are not for enabling the Soril:to perceive the Species of Things in its Senforium; bus only for coinceying them thither; and God has no need of fruch Organs, be being every where prefent to the Things themfelves. Ibid. p. 1378 .

Chap. 22. of Natural Philosophy:
2. We obferve alfo that a Body, which refifis the Touch and is with Difficulty divided, keeps it felf alfo within its proper Limits, and preferves its Figure, without wanting a Veffel to contain it ; and on the other hand, that a Body which does not refift the Touch, does not contain it felf within its Limits, but runs and freads about, if it be not put into fome Veffel. Wherefore Ariftotle having given the Name of Dry to a Body which is contained within its proper Limits, and that of Moijt, to a Body which does not do fo, but wants to be contained within the Limits of another; it follows, that the bard Body we are fpeaking of, is the fame as what Arijtotle called Dry, or at leaft a Species of it ; and alfo that the Liquid is the fame with the Moift, or at leaft a Species of it.
3. As Arifotle has not explained what Drynefs and Moiftroofsi confirt in, fo neither has he explained the Nature of a bard and a liquid Body. But moft of his Followers contend, that a Body is hard, becaufe it comprehends a great deal of Matter in a little Compals, and that a Body is liquid, becaufe it contains but a little Matter in a great Compafs; fo that they make Harduefs to confift in Condenfation, and Liquidnofs in Rarefaction.
4. It is to be obferved, that they would be underftood to fpeak here of a Rarefaction, without the Addition of any Matter at all, not fo much as of foreign Matter; and of a Condenfation which does not in the leaft fuppofe any Sort of Matter to come out of the Pores of the condenfed Body; which Things are directly oppofite to what has been before eftablifhed; wherefore it cannot be thought ftrange, if we do not agree together as to the Nature of hard and liquid Bodies.
5. But if Rarefaction and Coudenfation were made as they prerend, yet it were eafy to prove that they are miftaken in their Notion of Hardnefs and Liquidnefs: For as the producing one Piece of white Marble, is fufficient to fhow, that the Nature of Marble does not confift in Blacknefs, fo it fhall fuffice to bring one Inftance ot a Body which dilates it felf when it grows hard, in order to fhow that Hardnefs does not confift in Condenfation : Thus we fee that Water is dilated, when it is turned into Ice, for the Veffels which contained it, and juft
3. In wah the Followers of Ariftocle, make Hardnefs aud Ligridinefs to conifis.

4. That their Opinion zoes apona falfe Suppofitions.
\qquad -
 -
held it, cannot then contain it, I but are many times broken,
6. A Mifike of the Ariftotelians, as to the Renfor woiny Voflels are bruken by the Frofe.
7. Another Proofthat Ise is not condenfid VVater, and why it foims uspon the VVater.
6. I know very well, that it will here be anfwered as ufual, that the Veffels would not be broken, but for fear of a Vacuum: That is, becaufe their Sides approach one another, that there may not be any Space left between their Concave Superficies and the Convex Superficies of the Water which is condenfed. But if this were true, it would follow, that all the Glads Tubes which we ufed in the forementioned Experiments, ought alfo to be broken, when no Air got into the Place out of which the Quickfilver came, which did not come to pafs, as I have oftentimes tried.
7. Add to this, that if Ice were only condenfed Water ; to make for Inftance, a Cubick Foot of Ice, there muft be more than a Cubick Foot of Water, and conrequently a Piece of. Ice would weigh more than a Quantity of Water of the fame Dimenfions: From whence it follows, according to what has been before demonftrated, that Ice ought to fink to the Bottom of the Water, and not fwim at the Top, as we find it does.
2. An ocrular 8. But for the full Conviction of thofe who feem to Demonsfyatiai: of the famic Things. defy all Arguments, and truft only to what they fee, let them but take a Glafs of the Shape of an inverted Cone or Pyramid, and after having filled it quire full of Water, expofe it to a great Froft, that the Water may become Ice, then if the Glafs holds but half a Pint, we fhall fee the Ice rife up about the fixth Part of an Inch above the Mouth of the Glafs, which is a a Dilatation fenfible enough not to doubt of the Fact.
9. V Vhat 9 . This then is a certain Truth, that every Body which the Nature of - hard 'Body confifts in. becomes hard, is not condenfed; and therefore Hardnefs does not confift in Condenfation, nor confequently dues Liquidnefs confift in Rarefaction; for as Water is dilated by freexing, fo is Ice condenfed by thawing. Having thus fufficiently confuted an Opinion which has been fo long received, and not thinking it worth while, to fhow how little Foundation there is for orher Opinions which have been received only by a few, I come now to eftablifh my own. And firft I examine the Appearances of

[^20]
Chap. 22. of Natural Philosophy.

a hard and of a Liquid Body, and find, that the one contains it felf within its proper Bounds, and the other does. not: And becaufe to be contained within its proper Bounds, is the fame Thing as not to be moved; I conclude, that to be bard, is to be compofed of Particles which are it fo at reft among themfelves, that their Connexion and Order, is not dijfurbed by any Matter that moves between

1. So at reft among themfelves) Though all hard Bodies have Parss in fome meafure at reft, and many liquid Bodies (viz. fuch as are made liquid by Heat) are manifeftly very much agitated ; yet becaufe fomething more than the bare Reft of the Parts feems requifite to conftitute Hardnefs; (for a Heap of very finall Sand, whofe Particles are all at reft, is not a hard Body;) and becaufe Motion does not feem always neceflary to conftitute a liquid Body, (for fome liquid Bodies are very cold;) I think it therefore worth while to add fomething here, to explain this Matter more tully.

Firft then, Let us hear what the famous Newoton fays, concerning that Force by which the primary and naturally indivifible Corpufcles of which the Particles of all Bodies are compoled, are connected and cohere together.

The Parts of all homogeneal hard Bodies which frully touch one another, fick together very firongly. And for explaining how this may be, fome have invented hooked Atoms, which is beguing the Queftion; and others tell uss, that Bodies are glucd togetber by Reft, that is, by an occult 2 nulity or rather by Nothing ; and others that they fick together by confpiring Motions: I had rather infer from thcir Cobxufion, that their Particles attra\& one aroother by fome Force wohich in immediate Contact is exceeding firong, at fmall diffances performs the Chymical Operations abovementioned, and reaches not far from the Particles with any Sonfible Effct ---Now if componend Bodics are so very hard, as we find fome of theri: to be, and yet are very forous, and confift of Parrs whichare only laid iogether, the fimple Particles which are void of Pores, and were never yet divided, muft be musch har. der. For fuch hard Particles being heaped up together, can faurce tonch ore another in more than "femo Points, and therefore murt be fepa-
rable by much lefs Force than is requifite to break a folid Particle, whofe Parts toutch in all the Space between them, without any Pores or Interfitces to weaken thcir Cohafion. And how fuch very hard Particles which arc only laid together, and tousch only in a fow Points, can fick together, and that fo firmly as they do, withoret the Ajfiftance of fomething which caufes them to be attracted or preffed towards one another, is very difficult to conceive.---Now the fmallef. Particles of Matter, nuay cobere by the Atrongef Attrations, and compose bigger Particles of weaker Virtue; and many of the fe may cobere, and compofe bigger Particles mobofe Virtue is fill weaker: And fo on, \&cc. Opticks Ibid. p. 364.370 .

It is evident therefore, that the Particles of which the original and fmalleft Parts of Matter are compofed, ftick together and are united, not by $R_{c} f$ (which is really nothing at all) but by mutual Attraction. (See the Notes above on Chap, xi. Art. 15.) And it is manifeft, that all Bodies, finid and folid are equally compounded of fuch fort of Particles entirely folid and perfectly hard. But that which is next to be enquired into, is, what the Figure tand Compofition of the larger Particles muft be, in order that the Bodies compofed of them, may be hard or liquid.

Secondly therefore. That Body, whofe Particles are fo fitted to each other, as to touch one another in large Superficies's, will, by the very ftrong mutual Attraction of its Parts, be a very hard Body; and according as thofe Parts afterwards either touch one another only, or are moreover intangled with each other, will the Body be more or lefs brittle, and capable of being made liquid by Hear, with more or lefs difficulty: As Ice, Wax, Glafs, Metals, Bones, Wood, \& c_{i}
them. Whence it follows, that a Body is fo much the harder, as it has more Parts which immediately touch each other without moving.
10. What the Nature of a ligusid Body confifts in.
io. On the other Hand; becaufe, not to contain it felf within its proper Bounds, is the fame Thing as to move it felf; and becaufe we cannot conceive any more effectual Caufe of that Motion which we fee in a liquid Body, than the Motion of its infenfible Parts; I therefore conclude, ${ }^{2}$ that Liquidnefs confifts in the perpetual Agitation of the infenfible Parts of the liquid Body. Thus for Example, when a Glafs full of Water fet upon a Table is at reft, though we cannot perceive any fenfible Agi-

Thirdly, That Body whofe Particles touch one another in lefs Superficies, and therefore are not fo hard, may yet be more folid; and therefore Gold is heavier than a Diamond: though not fo bard.

Fourthly, That Body, whofe Particles, when they are compreffed, approach towards each other, but do not Jip under one another, is an elaffick Body, and returns to its Figure, by that Force which arifes from the mutual Attraction of its Parts.

Fifthly, That Body, whofe Particles flip under each other, is a foft Body, which yields to the Stroke of a Hammer.

Sixthly, That Body, whofe Particles toluch one another in very fmall Superficies, is a crumbling Body, as Snow, or fuch whofe Parts may very eafily be feparated; as two well poIifhed Marbles, which ftick together in a Vacuum, but are pulled atunder. by the leaft Shake.

Seventhly, If the Parts of a Body, either do not touch one another at all, or at leaft will very eaffly fip, and are of fuch a Bignefs, as to be eafily agitated by Heat; and the Heat be fufficient to agitate them, though perhaps it be much lefs than is required to keep Water from freezing; or if they be not agitared by' Motion, but are only fimall, round, flippery, of fuch a Figure, and Bignefs, as make them very eafily agitated and give way, that is, a fluid Body. And yet the Parricles of fuch fort of Bodies which are moft fluid, do in fome meafure cohere together; as is evident from hence, that 2 rickflver very well cleared of ail Air, will ftand 60 or 70 Inches high in the Baromecer (as was faid betore). And

Water will rife in fmall Tubes open at both Ends in a Vacuum. And Drops of Liquors hanging upon a hard Body, and juft ready to fall, will gather themfelves into round Figures in a Vacuum: viz. by fuch a mutual Attraction of their Particles, as that by which the polifhed Marbles ftick together. Furcher, Thefe fluid Bodies, if they have Particles which can eafily be intangled with one another, as Oil, or fuch as may be made ftiff by Cold, and faftned together, as if they had Wedges put between them, as Water, fuch Bodies eafily grow hard. But if they have fuch fort of Particles, as 'can neither be intangled with each other, as Air , nor made fiff by Cold, as 2 uickfilver, then they cannot by any means be made to congeal,

Eighthy, If the Parts of a Body be very finall, fpherical, and exceeding denfe, fuch a Body may alfo be fluid, and yet be much heavier, than harder Bodies, whofe Particles are not fo folid, but which touch one anosher in larger Superficies.

Ninthly, Thofe Bodies, whofe Particles are agitated with a very quick Motion all ways, whatever the Figure of them be, will be liquid, as Metals that are melted, \&ic. Bur fuch Bodies grow hard, as foon as that violent Motion ceafes.

Lafly. Thufe Bodies, fome of whofe Particles are intangled with each other, fome of them touch one another in large Superficies, and fome are loofe, and will eafily flip under each other, thefe are flexile as Leather, or very pliant as Twigs, Glue, Pitch, \&c.
2. That Liquidnefs conffis) See the Notes on the foregoing Artic.

Chap: 22. of Natural Philosophy.

tation in it, yet notwithftanding, fome of its Parts are in Motion downwards, and at the fame time others of them are in Motion upwards, fome of them move from the Right to the Left, and others from the Leit to the Right, in a word, there are fome parts of the Water which move in all manner of Determinations; whence it follows, that That Body is the moft liquid, whofe infenfible Parts are the fmalleft, and the moft agitated.
II. If what. I have now faid of Liquidnels be joined to what was before faid concerning Hardnefs, we fhall eafily conceive that a fuft Body, which feems to be of a middle Nature betwixt a hard and a liquid Body, and to partake of them both, is therefore foft, becaule it is compofed of two Sorts of Partsy the one in fome meafure at reft, and connected with each other, while the other are in Motion, and thereby caufe fome fmall Agitation in the former.
12. Now that which confirms me in my Opinion concerning the Nature of bard and liquid Bodies, is, that the chief Properties of them are neceffarily deduced from thence. And Firft, Suppofe the Nature of a hard Body to confirt in what I have faid, it follows from thence, that it muft be with Difficulty divided: For, for Inftance, if I put my Finger to any of its Parts, I ought to feel the Refiftance, not only of thofe Parts which I touch, but alfo of all thofe Parts which are behind them; and many times it is much eafier to move the whole hard Body, than to feparate one Part from it, becaufe the reft of the Body has a ftronger Connection with, and is more at reft, with refpect to this Part, than the neighbouring Bodies have with the whole Body.
13. On the contrary, fuppofe the Nature of a liquid Body to confilt in what I have faid, it follows from thence, that a Liquid muft be very eajlly divided.. : And indeed if 11. What the Nature of a Soft Body confifs in.

[^21] … \cdots
 refifs the Tozsch.

\qquad
\qquad
 . $\because \therefore=$ $\cdot:-$ 71
 13. They ${ }^{2}$ liquil 'Body is eafily diviI put my Finger to it any way, it meets with no Refiftance; for thofe few infenfible Parts which my Finger touch, being in Motion already, are very ready to quit their Place; neither are they fupported nor hindred by the Refiftance of thofe which are beyond, which are alfo in continual Motion, and therefore eafily yield to them, and open a Paffage for them all ways.
14. What I have advanced concerning the Nature of a hard and of a liquid Body, is fill further confirmed from hence, that all the Confequences that can be drawn from it, help to explain fome Experiment, which perhaps it
14. Whymany Bodies are preferved uancorrupted, within the parts of a would be impoffible to explain without it. And firf, if we confider that fome Bodies are eafly altered, only by difturbing the . Order of their Parts, and that every Thing endeavours as much as it can to continue in that State in which it is, and confequently that which is once at reft, will never begin of it felf to move; it will not be difficult to find out a very eafy way to preferve a haird Body a very long time, viz. by inclofing it in another bard Body; whofe Parts being at reft among themfelves, can make no Impreffion upon it, and are moreover a Guard upon it, againft the Affault of any external Caufes which might tend to corrupt it. And thus we fee that Salt, Sugar, and Metals, are preferved by being thus inclofed in hard Bodies.
15. Of the Vertue of $L i-$ guors to difjolve certain Bodies.
16. VVhy a Liquor does not entirely dilJolve certain Bodies.
15. On the other hand, it is eafy to forefee, that the contrary ought to happen, if hard Bodies be put into Liquids : For the Parts of Liquors being I^{1} in continual Agitation, they may eafily fo /bake and move the Parts of hard Bodies, as to force them out of their Places, and carry them along with them. And thus we find it by Experience, in all hard Bodies that can be altered, as in Sugar and Salts, which are diffipated and fink to the Bottom of the Water almoft in a Moment; infomuch, that if we chrow a Pound of Sugar into a great Tub of Water, it will intirely difappear in a fhort time; and the Parts of $\mathrm{it}, 2$ will alfo be fo diflipated, and fpread amongft all the Drops of Water, that there will not be one of them but what is impregnated with it.
16. And fince, hard Bodies may be compofed of Parts of different Bigneffes, as well as liquid Bodies, it is eafy to conceive. that there may be fuch a Liquor as will car-

[^22]afunder, as the 2 uantity of VVater in which they float, will allow. And does not this Endeavouy imply, that they have a repulfive Force by which they fiy from one another, or at leaft, that they attract the VVater (See the Notes on Chap. xi) more Jtrongly than they do one another. For all Thipgs afcend in VVater, which are Lefs attracted than VVater by the gravitating Power of the Eiarth; So all the Particles of. Salt which float in V Vater, and are lefs attracted than V Vatcr by any one Particle of Salt, muft recede from that Particie, and give way to the more attracted VVater.

Chap：2e：of Natural Philosophy：

ry away with it only fome certain Parts of a bard Body， and that others will not be difplaced by it．Thus Water will only wafh off the fineft Parts of Liquorifh，and leave the groffer ones at reft with each other．

17．It may alfo fo happen in hard Bodies，that the Parts 17．Of the of them which are pretty near equal，may yet be fo Solid；${ }_{\text {Pifower of }}$ A－ and on the contrary，all the Parts of a certain Liquor quafortis． may be fo fmall，that the Parts of the hard Body will not be at all moved by them，as they would be by the groffer Parts of another Liquor；which doubtlefs is the Reafon why common Water，will not diffolve Silver，and why Aqua Fortis，which the Chymifts call Spirit of Ni－ tre，I will eafily diffolve $i t$ ，but is too weak to diffolve Gold．

18．However，it is not only the Grofnefs of the Parts of any Liquid，which renders it capable of feparating the Parts of a hard Body；the Pores which are between the does not dif－ Parts of a hard Body，do alfo contribute towards it：For they may be of fuch a Figure，and alfo fo fmall，that the Parts of the Liquid cannot penetrate them；from whence we may conclude，that the Parts of the Salts of which Aqua regia is made，are put together in fuch a manner， as to compofe Bodies 2 too grofs to enter the Pores of Silver，and fo only fliding by them，they can neither go in，nor divide the Parts：Wherefore it is not to be won－ dred at，if this Water will not diffolve Gold．

1．VVill cafily diffolve it）Con－ cerning the difolving of Metals the fame celebrated Perfon fays thus． V Vhen Aqua Fortis，or Spirit of Vitriol poured uppon Filings of Iron， diffolves the Filings roith a great Heat and Ebullition，is not this Heat and Ebullition effected by a violent Motion of the Parts，and does not that Motion argze，that the acid Parts of the Liquor rufh rowoards the Parts of the Metal mith Violence，and run forcibly into its Pores，till they get between its outmof Particles，and the main Mafs of the Metal，and furrounding thafe Particles，loofen them from the main Mafs and Set them at liherty to float off into the VVater？And when the acid Par－ ticles，which alone would diffil with an eafy Heat，will not feparate from the Particles of the Metals，withort a very violent Heat，does not this con－ firm the Attration between them． Opticks，p．352，Now this fame

Aqua fortis which eafily diffolves Iron or Silver，will not diffolve Gold at all，the Reafon of which is，be－ caufe its Particles，which are more ftrongly atrracted by the Particles of Iron or Silver than by one another， are on the other hand more ftrongly attracted by one another than by the Particles of Gold．The contrary to which we are to underftand of that Force by which Gold is diffolved in Aqua regia．

2．Too grofs to enter）Mr．Clerc in his Phyficks，Book II．Chap．iv． Scct．24．contends on the contrary， that the Parts of Aqua regia，are Sharper and fmaller than thofe of Aqua fortis，and therefore can enter the very fmall Pores of Gold only，and Spparate its Parts，which like VVedges， they drive from one another，whilf the groffer ones move about the Sw－ perficies of the Gold to no purpofe， they not being able to diffolve the con－ tinuity of it，becarfo they cammot in－
19. The Method of feparating Gold from Silver.

: 7 7 \because

-110
..........
19. It is from the Confideration of the different Properties of the feveral Sorts of Aqua fortis, that the Refiners of Gold have lately found out a way of feparating Gold from Silver mixed with it:"The whole Secret of which confifts in putting the Mass compofed of Gold and Silver into Aqua fortis, which will diffolve the Silver only; for then its Parts will be brought out by thofe of the Liquid, till the pure Gold will remain like Sand or Dregs at the Bottom of the Veffel; fo that by inclining it gently, and pouring the Aqua fortis into another Veffel, it will carry the Silver along with it, and leave the Gold at the Bottom: After this, they feparate the Silver from the Aqual fortis in the following manner; they put a Quantity of common Water to the Aqua fortis, to make it lefs corrofive, and then put in a Piece of Copper, againft which the Particles of Silver brought out by the Liquid ftriking, they are ftopped by it; in the fame manner as Duit fying about a Room is fopped by the Hangings or any other Furniture which is foft, or as a Stone fticks; when it is caft into Mortar. :-The Gold and the Silver being thus feparated from one another in Duft, may each of them be melted in a Crucibles and then made diftinct Maffes of.
عo. Vvhy the (20. It may here be asked, why the fmall Particles of Parts of ma- Salts and Metals, wim thus in all the Parts of common
ny ny Bodies beavier than VVater, dio Water or Aqua fortis indifferently, and whence it is, that they do not fink to the Bottom of the Veffels? For this
zot sink in it.
ter its Pores. And again, Seet. 28. He fiys, That from the Mixiture of many Salts, the Parts of the Aqua regia become fimaller, and more fitted to enter the fralluft Pores, and Separate the finalleft Parts ; bct woeen wobich they are driven like VVedges, by the M-ation of the Liquid in which they Swim; but mben they enter into wider Pores, they bave no Effect; in the Same manner as the Force of Y Vedjes to Separaze Things joined together, is nothing aznlefs they be driven into fircight Fiffives., Since therefore the Pores of Goid are the fmalleft of any Metal, thicy will admit the Particles of Aqua regia only, aind the grofSer Parts of Aquaz fortis cannot culter into them. Now the Same Parts of Aqua regia are too $\mathrm{S}_{\mathrm{z}} \mathrm{btle}$ to bave Strength enough, to remove the Sides of the Pores of othcr Metals; for they maint the groffer Parits of Aqua fortis which fill and divide the larger Pores. Thusfarhe; but what he
fays, he does not confirm by any Arguments or Reafons, unlefs it be this, that Silver feems to have larger Pores than Gold, becaufe it is lightert; but from the known Properties of Silver, irs hardnefs, fmoothnefs, \&ic. We may wirh much greater Probability collect, that it confifts of fmaller Particles, and therefore has fmaller Pores, though more of them; But that Cold on the con-
trary, confifts of * lar- * See Part ger Parricles or Lumps, III. Chap. and fo has larger Pores, vi.Art. 13 . but much fewer. And as to the Nature of the Liquids, I Mould think, that the Parts of the Aqua recia, would become not Imaller, but larger by the Mixture of many Salts. But all this depends; as was laid before, not fo much upon the Lignefs and Figure of the Pores, as upon the different Atrraction of the Pats.

Chap.22. of Natural Philosophy.

fhould feem to follow from what was before demonftrated concerning hard Bodies fwimming in Liquids, becaufe every Particle of Salt or: Metal is heavier than an equal Mars of the Liquid in which it fwims. However, it is to be obferved, that when we reafoned in that manner, we confidered only the Gravity of the bard Body and the eafinefs of the Liquid to be divided; we did not then know of the I Motion of the Particles of the Liquid, by which they carry up with them as many Particles of Sale or Metal, as would defcend by their own Weight; in the fame manner as the Bubbling up of new Wine, makes other Bodies which are heavier, fwim, and not fink to the Bottom of the Tub; where we fee that they do at laft fubfide and compofe the Lees, when this Motion, which is greater than the ordinary Motion of the Liquid, ceafes. To which may be added, that the Particles of the diffolved Body are in fome meature intangled with thofe of the Liquid, which they go along with; which fhows us more particularly that this hinders them from being able to fink.
21. And that which is remarkable here, is, that as the Particles of the Liquid are finite, and the Force by which they are agitated is limited; it muft neceffarily follow, that when they have once laid hold of as-many Particles as they can contain, they cannot after that feparate any more, nor overcome the Refiftance of the remaining Particles which are at reft, wherefore the hard Body will be no farther diffolved. And thus we find by Experience, in common Water and Aqua fortis, that they will diffolve but a certain determinate Quantity of Salts or Metals. Thus, for Example, if, after a Pint of common Water has diffolved a certain Quantity of Salt, one Grain only be put in, it will continue whole in the Water, as it would do in a dry Place.
22. And from hence it follows, that if after a Liquid has feparated all that it can from a hard Body, it be evaporated to a certain Quantity, that which remains will not be able to contain all the Particles of the diffolved Body, wherefore many of them will be forced to unite together, and to compofe fomething fenfible; and thus it is, that: if Water be boiled, having firft been ftrained like Lye, through Earth charged with Nitre as much as it can be, and then taken off from the Fire,

[^23]22. How the Chryfalizatiof the Chymijis is.made。
acent rhaz a certain V Vater will dijfoluc only a certain 2unatity ofs bard Body.
and permitted to fettle a little, a great many Particles of the Salt-peter which are difingaged from the Particles of the Water, will ceafe to move, and ftriking many of them $>$ together againft the Concave Sides of the Veffel, will at laft compofe ${ }^{1}$ thofe curious Bodies in the Form of Hexagons, which we fee ftick there. And in the fame manner we may apprehend, how all the other Cbryftalizations of the Chymifts are made.
23. That the Water sobich will not diffolve one certain Body any longer, woill yet diffolve a Body of another Sort.
24. Howo the Precipitation of the Chymifts is made.
23. Though a certain Quantity of any Liquid, will diffolve but a determinate 2 uantity of a certain bard Body, yet this does not hinder, but that other hard Bodies may be diffolved by the fame Liquid; becaufe their Particles may be of fuch a Figure, as to fuit with the Particles of the Body already diffolved, in fuch a manner, as may occafion more diffimilar Particles, to move with greater Eafe;, than the fimilar Ones could move. And thus Experience fhows us, that after Water has diffolved as much Salt as it can, it will yet diffolve a fmall Quantity of Vitriol or Alum.
24. If a Body be put into a Liquor, to whole Particles it will more eafily unite it felf, than to thofe of another Body which it had before diffolved; and fuppofing alfo that it cannot comprehend thefe two Sorts of Particles together, 2 it mult be forced to let go the Particles which it had before embraced, which will confequently fubfide to the Bottom of the Veffel. Thus if a little of that diffolved Salt, which Chymilts call Oil of Tartar, be poured upon Aqua fortis which before had diffolved Silver, the Metal will be forced to fubfide to the Bottom of the Veffel. And this Inftance fhows us the Reafon of all the Precipitates of the Chymifts.

[^24]2. It muff be forced to let $g o$) If fuch a Body be put into fuch a Sort of Liquor, that the Particles of the Liquor will be more ftrongly attracted by the Particles of this Bo$d y$, than by the Particles of that Body which was diffolved in it before, the-Particles of the Liquor being by this ftronger Attraction removed from the firft Body to this Other, will fuffer the Particles of the firt Body to fink to the Bottom, in the fame manner as Iron is feparared from a Loadftone, by putting a ftronger Loadftone to it.

Chap.22: of Natural Philosophy.

25. We muft not here omit another Circumftance very confiderable, and that is, that the Particles of two Liquors may be of fuch a Bignefs and Figure, as to intangle one another when they meet together, and fo move with more difficulty; whence it follows, that they will compofe One Body wbich is not fo liquid: So likewife, if the Particles of the two Liquors adjuit themfelves to each other, fo that the greateft Part of them are hindred from moving, then all the Particles together will form a Body pretty bard. Thus we fee, that if an equal Quantity of Spirits of Wine and Spirits of Urine, each of which Liquers are very fluid, be mixed together, they will unite into a pretty bard Body.
26. We may add to what has been faid about the Mixture of different Liquors, that there may be found one, which is compofed of fuch fort of Particles, that fome of them being much larger than others, they cannot continue their Motion, but by means of the fmaller ones; fo that if there be any way difingaged, the Weight of the other alone, or the Irregularity of their Figure, will make them continue at reft with each other, and according as they are more or lefs clofely united together, they will compofe a Body more or lefs bard: And this is the Reafon why fome of the Particles of Milk or Blood curdle, while others which are more proper to continue their Motion, being difingaged from thefe, compofe a Serum, which remains liquid. And this is alfo the Reafon why, in fubterrancous Caves, which they call dropping Caves, certain liquid Drop's which diftill from the Roofs harden into Stone, after they have been a little while in the open Air.
27. Having fufficiently Thown by there Experiments, that the Particles of liquid Bodies are in continual Agitation, we are to enquire next, what the efficient Coufe of this Motion is, firft, in Water and other fuch like Liquids, which feldom grow hard, but more particularly in Air, which never hardens, but always remains liquid. Wherefore in the firft Place it is reafonable to think, that the \dagger Figures of the Particles of Liquids are not altered, fo long as we cannot perceive any kind of Alteration in them: But further, becaufe they cannot move with regard to each other, as they ought to do; to compofe a Liquid, without leaving a great many Interftices rourtd them; which thete being I no Reafon to think empty, they muft neceffarily be furrounded by fome Mat-
\dagger For if their Figures were conränually altezed, there woald be no need or fubrid Matter to Eill up theiriaterfices.
ter which is very fubtle, fuch as that which we before called the Firft or Second Element. And as the Particles of hard Bodies diffolved in any Liquid, are kept in Motion by the Particles of this Liquid.; fo we ought to think, that the Particles of Water, and of all Bodies which do not congeal, but always remain liquid, are in perpetual Agitation, becaufe they fwim in the Matter of the Firft and Seconid Element.
28. How Liguors are eraporated.
29. If this Matter be very much agitated, it is eafy to conceive, that it may move the Particles of the Liquid in fuch a manner, as to diffipate them from each other, and make them fly into the Air, and this is called Evaporation.
30. On the other hand, if its Motion be very faint, or
31. How they if it be more than ordinarily fubtil, it will follow, that it will not be capable of preferving the Liquidnefs of fome groffer Bodies; in the fame manner as we fee the Water running amongft Bulrufhes, keeps them in Motion, and diftinct from each other, whereas in the Air, they are confufed and mixed together, without any Motion; ${ }^{\mathbf{I}}$ and thus the Water is frozen in Winter, and ned into Ice. But we cannot fhow a Reafon why this happens at one Time of the Year, rather than at another, till we come to know fomething more of the Syttem of the World.
32. Why fome Bodics grom foft before they become lignid.

2 3 . Why other Bodies become liguid soithout growing forfo.
30. If the Difpofition of the Particles of a Body be fuch, as to leave Pores between them large enough to receive the groffer Matter of the Firft and Second Elements, this Matter may fhake the Particles a little, before it quite feparates them, and moves them from each other, and confequently the Body ought to grow foft, before it becomes liquid; as we fee Wax does.
3r. But if the Pores of a hard Body are fo fmall, that only the moft fubtil Matter of all can pafs through them, in this Cafe, that which is more grois, and which is alone able to fhake thofe Particles which make the leaft Refiftance to it, can only apply it felf to the Superficies of the Body; whence it follows, that it will have diffolved
I. And thrus the Water) Since neither the Force it freezes with, is always proportioned to the Cold, but feems to have fome Dependance upon other Changes in the Heavens; not is the Cold, unlefs fo far as it is merely comparative (See the Notes on Chap. wxilii. Art. 54.) owing to the Particles being at Reft; nor can Hardnefs it felf (See the Notes on

Art. 9. nf this Chap.) arife from the mere Reft of the Particles. Congealing muft neceflarily be afcribed either to nitrous Particles; or to the Particles of fome other Salts, which like W edges fixed between the Particles of Water, join them tngether and make them cohere: However there is hitherto nothing certain found out concerning thefe Particles.
all the external Parts of the Body, before it makes any Alteration within it. And fo fuch a Body will be entirely difolved wuitbout being made foft, as we find Ice does. *
32. It is not at all furprizing, that Water, which is liquid, fhould fofters a great many hard Bodies which it penetrates and diffolves, and that, when it is mixed with Plarifer of Plaifter of Paris, for Example, there hould arife a Compofition pretty liquid: But it is very furprizing, that afterwards it fhould acquire a Hardnofs which it would never have had without mixing Water with it, which one would think, fhould rather help to foften, than to harden it. Nor can we think, that this arifes from a fudden Evaporation of the Parts of the Water; for if it be weighed when it is liquid, and weighed again when it is grown hard, we canot perceive that it has loft any of its Weight. My Opinion concerning the Matter is this, that the Fire has formed a great many Pores in the Plaiter, of fuch a Bignefs, as the groffer Particles of the Air cannot penetrate, becaufe they are not folid eneugh to remove the Obitacles they meet with, which the Particles of the Water, which are more folid and penetrating, are able to do. Wherefore, when the Plaifter is moitned with, or put into fuch a Quantity of Water only, as is fufficient to furround every Grain or Lump of it; and after that they come to be ftirred up together, then the Particles of the Water which force themfelves into the Pores, like fo many fmall Wedges opening and fplitting them, divide thefe Grains into fill fmaller Parcels. And becaufe thefe Parcels have a larger Surface than the Grains had before, of which they are but the Duft, it is more than the Water is able to furround. Infomuch, that the greateft part of them touching one another clofe, and continuing ,at reft, it is no wonder ${ }^{1}$ if they compofe a hard Body.
> * The true Caufe why fome Bodies grow foft before they melt, and others not, feems to be this; that thofe Bodies which grow foft, are compofed of diffimilar Parts, fome of which melc fuoner than thofe they are mixed with.
> 1. If they compofe a hard Body) Mr. Le Clece attacks our Author here with three Arguments in his Pby $\overline{f i c k s}$, Book V. Chap. xiv. Sect. 25. Firff, fays he, This Aifwer does not agree sith a Mafs made up of Meal and Water kneaded together, and baked;
and other fuch like Things that might be inflanced in. But can any Thing be more evident, than that the Evaporation of the Water produces the lame Effect in Bread, as the Diffolution of the Lumps in Plaifter of Yaris? For though not all, yet certainly fome of the Water is diffolred into Vapours, in proportion to the Heat, wherefore the external Part of the Bread is much barder than the Internal. Secondly, He fays, He does not frow why the Patticles of Water fo dividied toush ane another clofe.
34. Why Water does not harden Lime.
33. From hence we draw this Confequence, that if the Plaifter be put into fuch a Quantity of Water as is fufficient to furround all the finall Parcels which the Lumps are divided into, they will be hindred from refting, and fo the Piaiter will not grow hard at all; and thus the Mafons find it by Experience, and this is what they mean, when they fay their Plaiter is drowned.
34. Notwithftanding this, it is not to be wondered at, if there be fome Bodies which the Water will divide, and yet not at all help to unite and harden their Parts into one Mass, as it does thofe of Plaitter of Paris; for the Particles of thefe Bodies may be of fuch a Figure, as fcarce to touch one another at all, and fo cannot unite together to compofe one Whole : To which it may be further added, that the Water has fo quick a Motion within fome Bodies, that it further feparates the Particles already difunited; and by this means the Pores or Intervals, which are between them, become fo large, that the Air has Power to get in, and hinder fuch Particles from touching one another. And this is the Reafon why Lime, which is divided by Water, does not yet become hard like Plaifter of Paris: For if a Piece of Lime, which has been wetted with a little Water, be divided without meddling with

But he does exprefsly thow this in thefe Words. Andbecaufe thefe Particles bave a larger Surface than the Grains had before, of which they are but the Duff, it is more than the Water is able to furround ; Infomuch, that the greateft Part of them touiching one another clofe, \&c. What could have been faid more exprefs. But (I fuppofe) this learned Gentleman, when he tranflated this Place into Latin, being not very attentive, overlook'd the connective Particle, tellement que. Thirdly, He fays, That be juppofes Hardizess to arife from immediate Contact, and Ref, wobich we have before confurted. Concerning this, See the Notes on Art. the gth of this Chap. Having thus confured the Opinion of our Author, the learned Gentleman conjectures, "That the Particles of Water which "diffolve the groffer Lumps of the "Plaifer, are fo fixed into the lef"fer Particles, as, like Wedges, to "join mariy of hem torether, and fo sf compofe a niore Solid Majs. But,
if the Parts of the Plaifter mult be kept together by Wedges, it feems much more probable, that the burnt Parts (for the Plaifter is made of Stone half burnt) growing a little hot, by the Water being poured on it, draw the volatile Salts out of the Parts which are not burnt, which Farticles of the Salts being fixed in the Pores of the Plaifter, keep its Parts together: For the ftiff Particles of Salt, feem much more proper to perform the Office of Wedges, than the limber and flexible Parts of Water. But indeed, Plaifter of Paris, Clay, and fuch kind of Bodies, do therefore grow hard in this mannem, becaufe the Water in exaporating, fo autracts their Parts to each other, which before did not touch one another, that afterwards touching one another in larger Superficies, they cohere together by that mutual AttraEtion, which depends upon immediare Contact. See the Notes on Art. the gth of this Chap.

Chap. 22. of Natural Philosophy.

it, the Duft into which it diffolves it felf, is of two or three times as much Bulk as it was before.
35. When the Water penetrates the Pores of certain Bodies which it cannot entirely divide; it is evident, that it will ftop for fome time; becaufe it muft lofe its Motion, by ftriking againt the Particles which it touches: But it is otherwife with the Matter of the Firgt and Second tion, by ftriking againft the Particles which it touches: does not fop
But it is otherwife with the Matter of the Firft and Second in the Pores
Element, when it paffes through the Pores of hard Bo- dies. dies: For as there Pores, as fmall as they are, are formed by its continual paffing through them, fo it leaves them big enough always to find a Paffage through, without ever being fropped.
36. However, it is to be obferved, that by bending a hard Body, fuch, for Example, as the Blade of a Sword? the Particles will be made to expand themfelves on the Convex Side, and to contract themfelves on the Concave Side. So that its Pores will become fmaller and ftreighter on this Side; but this ought not to hinder the Matter of the Firft or Second Element from entring in, becaule being very fine, and moving very quick, it ought rather to alter its own Figure and become longer, or to wear in pieces the Matter which ftreightens it, than to be hindred in its Paffage; and fo the Pores will not be ftopped up by it.
37. But becaufe the fubtil Matter which paffes through the Pores which are fo very fmall, cannot endeavour to wear the Particles of the hard Body through which it paffes, but it mult at the fane time. endeavour to reftore the fame Particles to the State they were in before the Body was bent; it follows, that this ought to make the Body grow ftreight again. And thus we experience the Property which is called Stiffrefs, and which Workmen call I the Power of Springing.
38. However, this Property ought not to be found in all Sorts of hard Bodies indifferently, becaufe there are fome, whofe Pores are fo large, that though they be ftreightened by bending the Bodes, yet they will be fill

Abstract

1. The Pomer of Springing) Since this fubtil Matter, as was before proved, is only fictitious, it is much more probable, that if a Body be compounded of fuch Surt of Particles, that it be compact, and bends or yields inward to Preffion without any fiding of its Parts, it is hard and elaffick, returning to its Figure with F Force arifing from the mutual Attration of its Parts. . Newt. 'Opt. pag. 370.

But if the Parts of the Body flip under one another, then the Body is of that Sort, which will yield to the Stroke of a Hammer; But concerning the Laws of the Communication of Motion, in fuch Bodies as have a Poiver of fpringing buck, or are Elaftick, as they call it, when they meet other with certain lorces. Sce the Notes un Cinap. xi. Ayt. 6.
37. What the Force of Springing back confifts im.
36. What the Confeguence of the Matter of the Second Element paffing throngh very fmall Pores ought to beo
-
35. That the Matter of the Firft and $S_{c}-$ cond Element does not fop in the Pores dies.
wide enough to give a free Paffage to the fubtle Matter. Thus we can perceive by our Senfes, that the Parts of Steel which is not tempered, are larger, and confequently the Pores wider, than thofe of tempered Steel; whence it is eafy to apprehend that the Pores may be ftreightned, without hindring a free Paffage of the iubtle Matter through them; whence it follows, that when it is bent, it will not fpring back again.
39. Why a Plate of Iron beconmes Elafrick, byleing beaten, whbein $i t$ is cold.
39. Now to fhow, that the Power of Springing confifts intirely in the Smallnefs of the Pores of a hard Body, let us confider, that if a Plate of untempered Steel, be beaten upon an Anvil when it is cold, it will acquire a Power of Springing which it had not before. But it is manifeft, that this Beating does nothing elie but make the Parts approach nearer one another, and by this Means ftreightens the Pores ; whence it follows, that herein confifts this Power.
40. Forw this . 40. It may be further obferved, that if a Spring be held Power macy be bent a long time, without being allowed to recover it
ifft. felf, the fubtil Matter will be forced to alter its Figure by growing longer, if it be not able to wear in pieces the Matter of the hard Body ; or if it be, the Pores will grow bigger and bigger, fo as that the Matter of the Firft and Second Element may pafs freely through them; and this is the Reafon why the Body ought to lofe the Power of recovering it felf, in proportion as it is capable of being worn, which agrees with Experience.
4. Whence the Force mith wobich a storing unBends it jelf, arifes. 41. The Force with which a Body unbends it felf, depends partly upon the Swiftnefs of the Motion of the fubtil Matter, and partly upon the great Number of Pores through which it paffes at a Time : But it depends chielly upon the Difpofition of the fe Pores as they become injenjably freigbter and ftreighter. For by this means, that which gets into them ought to have the fame Force, and to produce the fame Effect, as a Body which paffes between two others, whofe Superficies are almoft parallel. Now according to the Laws of Mechanicks, though the Body which thus paffes between two others be very fmall, and moves but flowly, it will notwithftanding, have an incredible Force to feparate thofe two from each other.
43. Viby 42. When the fubtil Matter begins to remove the Parts of the Body which are in its way, it has their whole Refiftance to overcome, and alfo fome of the Refiftance felves. of the furrounding Bodies: Now becaufe every Thing endeavours of itfelf to continue in that State in which it once is, and therefore the Bodies which have received a

Chap. 22: of Natural Philosorhy.

certain Motion, continue of themfelves in that Motion; this fubtil Matter cannot continue to impell them, but it muft increafe their Motion; and it may fo happen, that by its impelling and moving them in this manner, it may fo far divide the Particles of the Body, through which it paffes, from each other, as intirely to feparate and break them; efpecially if the Body be brittle.
43. Now in order to underftand how it is, that fome Bodies will bend without breaking, and that on the contrary, others will very eafily break; it is to be obferved, that the Texture of fome may be fuch, that their Particles may be intermixed with each other, like the Rings of a Chain, or the Threads of which a Cord is compofed. Now it is eafy to conceive, that thefe Bodies may be wound feveral times round without lareaking, becaufe their Particles are fo hooked together, that they may be bent any way. On the other hand, there may be Bodies which are not of fuch a complicated Texture, which are hard only, becaufe their Particles touch one another in a few Places: Whence it follows, that one cannot feparate them ever fo little, but their whole Continuity will be deftroyed; and thefe are what we call brittle Bodies.
44. Leather may ferve for an Inftance of a limber Body, that is, of a Body that will bend without breaking; and Glafs, on the other hand, for an Inftance of a brittle Body; that is, one that will break before it will bend : And there will be no doubt, but that the Limbernefs of the one, and the Brittlenefs of the other, confifts in what brittle of a I have faid; if we confider the Place where a Piece of very fmooth. dry Leather is pulled afunder, and the Place where a Piece of Glafs is broken: For the Leather appears unequal, and as it were untwifted, which is an evident Sign, that the Particles which are at the End of one Part, entered in between the Particles which are at the End of the other Part; and on the contrary, the Breach of the Glafs appears very well polifhed, which is a Sign, that the Particles of one of its Pieces, touched the Particles of the other Piece only, without entring in between them.
45. If Glafs, which is very brittle, have very large Pores on one Side of its Superficies, and which grow lefs and lefs towards the other Side, there cannot cuter into thefe large Pores, fubtil Matter enough to fill them, but that by continuing its Motion very quick towards the flreighter Parts of the Pores, it muft wholly difunite the Parts. Now when a Drinking-glafs, which is juft made,

$$
\text { K } 4 \text { grows }
$$

43. VVhat the Limbernefs or Brittlenefs of a Bory confifesin.
grows cold on a fudden; it is impoffible but that the Pores muft be larger where the Glafs is thickeft, becaufe the Heat, which dilates Bodies, continues longer here than in the other Parts: Wherefore the fubtil Matter which enters into thefe large Pores, going on fwiftly, and with great Force, 1 muitt break the Glafs in the Places where the Pores are fenfibly lefs. And this fo commonly happens; that it is fomething ftrange, if a hundred Glaffes be expofed to the Air as foon as they are made, if one of them efcape without breaking.
44. To binder Gliaffes fromi thastreaking.
45. The Glars-makers have a Way to prevent this Inconvenience, by putting the new-made Glaffes into the Arch of the Furnace, where they are removed by little and little out of the Flame, fo as not to get above the Space of nine or ten Foot, in fix Hours time, and then they are expofed to the open Air; and fo all the Parts growing infenfibly Cold, the one as well as the other, the Pores are equally ftreight every where, and the fubtil Matter which can enter into one of them, can run from thence freely, through all other Parts of the Glafs where the Paffages are equally open.
46. Afurbri- 47. What we have now faid concerning the Caufe of zing Property of a Glafs Drap. Glaffes being broken as it were of themfelves, opens a Way for us to explain a kind of a Miracle in Nature, which was lately difcovered and brought hither from Tab. III. Holland, and which has travelled through all the Uni-
rig. s. verfities of Europe, where it has raifed the Curiofity, and verfities of Europe, where it has raifed the Curiofity, and confounded the Reafon of the greatelt Part of the Philofophers. It is a kind of a Drop of thick Glafs, and fuch as the Glafs-Windows are made of, near the fame Shape and Bignefs as defcribed in the Figure. It is entirely Solid, except perhaps we may fometimes fee a few fmall Bubbles of Air in the thickeft Part of it, as at D, where it will bear pretty hard Blows of a Hammer without breaking. And yet, if the little End of it be broken off any where near B, the whole Body will burf in Pieces with a Noife; and we fhall fee it fcatter it felf all round,
[^25]Pieces. Hence the Chymifts Verfels are often broke. Hence they who cut Drinking-Glaffes into Epirals, firtt put a red hot Iron near them, and then pour cold Water on the Part of the Glafs whici is heated. And hence Drinking-Glaffes are reported to be broken only by the Voice bending them.

Chap, 22. of Natural Philosophy:

and to a good diftance, in a Powder, which though very fmall, has its Parts cracked in fo many Places, that it is eafy to divide them by preffing them between ones Fingers, 'which may be done without any Danger of pricking them, as there is, if we fhould hindle a piece of Glafs fo, after it is powdered in a Mortar.
48. To fay the Truth, this Pbenomenon is fo fingular, that it is no wonder it fhould at firt Sight furprize us. But if we confider it more clofely, it is eafy to obferve, of the Mo Motione that there is nothing elfe appears, but only the local Mo- of the Drop. tion of the Parts of the Body, which are carried fromthe Center to the Circumference: Now as we cannot conceive how a Body ihould begin to move of it felf, without being put in Motion by another Body which was in Motion before; fo it is eafy to imagine, that the fattering about of the Particles of the Gla f-drop, is owing to fome Matter which getting into its Pores, preffes upon them and divides them, in the fame manner as we fee a Wedge when it is driven into a Body with great Force and Velocity, fplits it, and feparates the Parts from each other. And there is no Doubt at all, but that this is the fame Matter which breaks the Glaffes in the GlafsHouie, when they are fuffered to cool too foon.
49. Now in order to underftand how this Drop could acquire a Difpofition proper to produce this Effect, there is Reafon to guefs, that the Workman, who makes a Secret of it, has a Way of cooling it all at once, by dipping it whenit is very hot into fome Sort of Liquor, which hinders it from breaking in pieces: For we fee by Experience, that Glafs which is fo cooled in Water, breaks into fmall Pieces. But be this Liquor what it will, it is certain, that the Parts of the Drop, which are neareft the Surface, cool firt, and by communicating their Motion to this Liquor, lofe what they had before, which kept them at a little diftance from each other; and fo they are condenfed, and contract their Pores, and fit them to the fineit Parts of the fubtil Matter, which preferves its Paffage through them. But this is not the Cafe of the internal Parts of the Drop, which not being cooled till after the other, cannot contract themfelves fo, becaufe thofe other being grown hard, and difpofed like an Arch, do not at all prefs upou them; fo that the Pores which are amongtt the Parts nearelt the Middle, are large, and grow lefs and lefs as they come towards the Superficies. And this being allowed, there is a plain Reafon for what caufes fo great Admiration.
50. That it ought to bear the Blows of a Hammer.
51.That they onght not to break of themfelves.
52. How it fies in picces.
53. VVhy it dues not break inpieces rohen the very End of all is broken off:

Tab.III.
Fig. $5 \cdot$

1. -1

\square.

54. That the Drop, wherz peated again, ought:o lofe its Vertue of burfing aJrindier.
50. It is no wonder that the Drop will bear the Blows of a Hammer, becaufe it is thick enough for that: For other Pieces of Glafs of the fame Bignefs will do the like.
5 r . It is alfo manifeft, that they ought not to break of themfelyes, as the forementioned Glaffes do, becaufe the fubtil. Matter which paffes through them, finds; as free a Paffage to come out, as to enter in.
52. But when the little End is broken off near the place marked B, we can there fee very large Pores into which the larger Particles of the fubtil Matter entring in a great Quantity, and continuing to move from thence very fiwiftly, towards every part of the Superficies, where the Pores grow ftreighter, they cannot but 1 . feparate every way the Parts of the Glafs, and fo divide them into that Powder. which we fee.
53. This Truth is confirmed by oblerving, Firft, That the Extremity of all, which is at A, is fo fmall, that there could be no fenfible difference in cooling between the infide and the outfide, fo that the Pores there are of an equal Bignefs throughout. Wherefore if the End be broken off thereabouts, this will not give leave to the fubtil Matter to let in its groffer Particles, any more than if it were not broken at all, and confequently the Drop ought not to burft in Pieces; as by Experience we find it does not.
54. Further, if one of thefe Glafs Drops be made red hot in the Fire, and then fuffered to cool flowly, its Pores will then become very near equal, in like manner, as Workmen neal Steel. After which, if the End of the Drop be broken off any where, becaufe there can no fubtil Matter enter in, but fuch as can go out on all Sides with as great Eafe as it entred in, therefore the Drop 2 ought not to burft in Pieces at all; which alfo we find true by Experience.

1. Separate every way) Becaufe Glafs is a Body which has a Power of Springing, it is probable, that this Glafs Drop is broke in the fame manner, as a Steel Bow burfts in pieces fomecimes, when it is loofned on a fudden; vix. by the too great Celerity and Force of that Mocion which arifes from the mutual-Attraction of its Parts. For its Parts from the Center to the Circumfesence, feem to be like fo many Bows
bent. And hence perbaps it is, that after it is burft in Pieces, its Fiflures are difpofed like fo many Radif drawn from the Axis to the Superficies, as Mr. Hook obferved in a Glafs Drop covered over with Glue. See Hook's Micrography Obferv. $7^{\text {th }}$. \therefore 2. Ousht not to burft in pieces) For the fame Reafon, that there is no danger of breaking a Bow when it is gradually loofned.

Chap.22. of Natural Philosophy.

55. Laftly, To confirm what has been faid of the Inequality of the Pores which are in the Middle, and thofe near the Superficies in thefe Sort of Drops, I carried threc p of them to three different Lapidaries: The firft of them I ordered to cut the Drop which I gave him, with Powder of Diamond about the Place C. I ordered the Second to drill a Hole in his, with the fame Powder about D, and I ordered the Third to put his upon the Wheel, and grind it plain at E, with Powder of Emery: Now after thefe three Workmen began feparately to work upon them with as much Caution as they do upon Pearls or Stones of a great Value, and had ground with thele Powders as much off from the Drops as amounted to the Thicknefs of a French Two-pence, which I reckon is as far as the fmall Pores reach, I faw each of them burft in pieces as ufual, to the great furprize of the Workmen, who did not at all expect any fuch Thing.
56. But to return now to the Confideration of Liquids. I obferve firt, That if they beall reduced to two Species, the one comprehending all thofe which we call thin, and rious E'xperiments of LaTas. Tab. III. Fig. 50 the other, all thofe which we call fat, it will not be difficult to determine what their principal Difference confiftsin. For fince the Former is very eafy to evaporate, but the Latter evaporates with great. Difficulty, we cannot but think, that the Particles of the one, muft be of very fimple Figures to be able to difingage themfelves from each other, and the Particles of the other, of more entangling Figures, fomething like Branches of Trees, by which they hold each other together.
57. And this is confirmed from hence, that if a Veffel full of thin Liquor be fo inclined, as to pour it out flowly, the Liquor will run about and divide itfelf into a great many diftinct Drops; whereas if it be a fat Liquor, it will go on in a long Thread, whofe Parts are uninterrupted.
58. This being fuppofed, we thall not think it at all ftrange; that Oil or Air is fo hard to mix with Water: the Reafon of which is, becaufe the Particles of thefe Liquors unite together much eafier than they do with the Particles of the other: Whence it is, that if Water and Oil put into the lame Veffel, be fo fhaked up together, that they feem to compofe but one Liquor, they cannot continue fo long, before the Particles of the Oil which meet each other, will entangle themfelves fo as to compofe feveral Drops; which becaufe of their Lightnefs, rife up, at the fame time that the Particles of the Water, whofe

Motion caufes them alfo to meet, join together likewife, and compofe other Drops which fink downwards: And this is the Reafon why thefe two Liquors entirely clear themfelves of each other, and become diftinct, the one at the Top, and the other at the Bottom.
59. That the Drops of one Ligeor which froim in anotber Liquor, cre round.
which fuim in a large Quantity of other Liquors. which they will not mix with, are all round like Balls. This cannot be perceived in Drops of Rain as they fall in the Air, by reafon of the Swifnefs of their. Fall; on the contrary, they ought rather to appear long, $\mathfrak{f O}$, as we fhould take them for fmall Columus; for the fame Reafon that a lighted Torch moved quick, appears like a long Train of Fire. A better Way then for us to take, in order to fee if the Drops of Water which fwim in the Air be round, is to put a little Water into the Hollow of one's Hand, and to throw it up into the Air, about the Height of our Eyes; for then it will divide it felf into a great many fmall Drops, which beginning to defcend very flowly, give the Spectator an Opportunity of obferving their Figure.
60. The Opi- 60. This Pbamenon has always been obferved, and a mion of the Reafon for it attempted to be given, by faying, that the Ariftotelians
conceraing the Parts of the fame Liquor have a mutual Affection for each Rounturefs of otber; whence follows a Defire of uniting together, which tkefe Drops. cannot be done perfectly, but by compofing a Ball, for if they compofed any other Figure, thofe Parts which were mof diftant from the Center, would tend towards it with a greater Force than thofe which are nearer it, and confequently make them give way, and remove back till they are all equally placed about the Center, and fo become round.
61. A Confurtation of the Opinion of the AriftoteEans.
61. But becaure there Words, Affection and Defire have no Meaning, that we can apprehend; unlefs they be afcribed to Subjects which are capable of Knowledge, therefore we cannot apply them to the Parts of Water, with- out fpeaking very improperly and obfcurely. Wherefore, thefe are fo far from explaining a Thing which ought to be very eafy, (for we are only inquiring into the Figure of a Body;) that they perplex it with Terms which have no clear and diftinct Signification when applied, to fuch Subjects. Further, let this Defire of uniting be explained how it will, it is very abfurd to afcribe it to Subjects which feem naturally to be fitted to difunite from each other, becaufe Nature has made them fo capable of difuniting.
62. In order then to find out the Caufe why the Drops of Liquors which fwim in others, are round, we muft keep this Truth in our Minds: That every Thing endeavours, as much as it can, to continue in that State, in which it once is, and confequently, that which is in Motion, would continue to move with the fame Determination with which it began, that is, according to what was before faid, in the fame ftreight Line. Thus, if the Body A, for Example, is moved along the Line $A B$, it is determined at the Beginning of this Motion to go towards C, and it will never of its felf tend to go towards E or towards D. However, if when the Body is come to B, it meets with any Obftacle there, it may turn out of the Line $B C$ and go in fome other Line. But becaufe it is forced out, it follows, that it will go as little out as it can, that is, when it quits the Line $A B$ at the Point B, it will tend to move in a Line which will make the leaft Angle that can be conceived with the Line BC. And becaule the Line BD does not make fo fmall an Angle with the Line BC as BE does, we cannot but think, that the Body A tends rather to move in the Line BE than in the Line BD. And becaufe the Circumference of a Circle, of which $B C$ is the Tangent, makes a lefs Angle with BC than any Argle comprehended betwixt two ftreight Lines. We muft conclude, that the Body A, when it is arrived at the Point B, will refift turning into the Circumference of a Circle lefs than into any ftreight Line. Laftly, Becaufe it is certain, that the Circumference of a great Circle makes a lefs Angle with its Tangent, than the Circumference of a fmall Circle does with its Tangent, we muft alfo conclude, that the Body A, when it is arrived at the Point B , where it is forced to turn out of its Way, will refift ftill lefs, the defcribing the larger Circumference $B G$; than the fmaller one BF .
63. This being fo, if the Particles which compore a 6_{3}. V by the Drop of Liquor, and which are hindred from going on in their Motion, by the Liquor which furrounds them, be compared to the Body A; and all that has been faid of the Body which made Refiftance to it at B, be applied to the Particles of the furrounding Liquor, which do not make fo great Refiftance, but that they can retire back a little; we conclude, that the Particles of the Drop, do gradually remove thofe firmounding Particles which get within the Spherrical Supcricies which the Drop may be
62. That Bodies whohich are compelled osst of the waciy, tend rather to defcribe the Circumference of a Circle than a fircight Line and the Circumfercnce of a larger Circle rather than of a smaller. Tab. III. Fig. 6. comprefiended under. And becaufe I the World is full, and the Particles which are removed out of their Place, have no where to go, without removing as many others, they muft neceffarily be driven to thofe angular Parts of the Drop which are without that fpherical Superficies; and fo the Drop will of it felf become of a round Figure, though the furrounding Liquor contributed nothing elfe to it, but only not relifting it at all : But becaufe the Particles of this Liquor, are more hindred from continuing their Motion in a ftreight Line, by the angular Parts of the Drop, than by the others which are nearer the Center, it is evident; that they muft force them towards the Center, and at the fame time make thefe other remove further off from it. 2 And in this manner the furrounding Liquor contributes as an efficient Caufe, towards making the Drop round. Nay, we may affirm, that it does the greateft Part towards it, if, all other Things being alike, this bemoved with the greateft Celerity.
6. That Drops, any way fupport ed, ousht to be a little fat.
64. But it is to be obferved, that there are two Things required in order to make Experience agree with this Demonftration: The Firft is, That the furrounding Liquor be not more than ufually agitated by any external Force; and Secondly, That the Drops be not any way fupported, at leaft, when they are of any confiderable Bignefs, for then their Weight, which is fuperior to the Caufe which makes them round, will make them a little flat, fo that they will be round only in that Part. which is parallel to the Horizon. As we fee by Experience in Drops of Water

[^26]vident, that the Parts of the inclofed Drop, mult gather themfelves into the Form of a Globe, when they will be leaft prefled upon. And this they will do, if there were no fuch Thing as Attraction. But fince the Drops of Water and of other Li quors, gather themfelves into a round Figure, in a Vacnum, as well as when inclofed in any Liquor, the Caule of this ought by all means to be afcribed to the mutual Attraction which there is betwixt the Parts of one and the fame Liquor. (See the Notes on Ckap. xi. Art. 15.) For the Drops of every Flusid affect a round Figure, by the muttual Attraction of their Parts: In the fame manner as the Globe of the Earth and the Sca affects a Yound Figare, by the mutrial Attraction of its Parts by Gravity. News. Opticks, pag. 370.
which reft upon fuch Leaves of Herbs as they will not wet, and in thofe put upon a dufty Table, as allo in Drops of Oil or melted Greafe fwimming on Water, which indeed are not round, but only on that Part which is level with the Horizon, for on the other Sides's they are flatter in proportion to their Bigneefs and Weight.
65. This laft Obfervation ought to be underfood only upon Suppofition, that all Things elfe are alike. For it is not at all impoffible, but that of two Drops of different Liquors, that which is the mof heavy, may be the roundeft, provided it be allo the fmalleft: The Reafon of which is, that all the Particles of the Liquor which furrounds the Drop, do not help to make it round, but thofe only which are applied to the Surface of it; the reft, which enter into the Pores, ferve rather to diffipate it. Wherefore a Drop, which is fmaller and heavier, having its Pores lefs, and perhaps a lefs Quantity of them than the other, which is larger and lighter, has alfo its Surface more continued, and confequently gives more Opportunity to the Caufe, which makes it round, to work upon it, and lefs to that which would diffipate it. Thus we fee, that a Drop of Quickfilver is always more round than a Drop of Water a little lighter.
66. On the contrary, Spirits of Wine, being very light, muft have fo many Pores, and the Superficies of it mutt be fo interrupted, that there can be but a very few Particles of the Air applied to it to make it round, the greatelt part of them pars through it, and tend to diffipate it; alro this is a Liquor, which it is very difficult to diftinguifh into Drops, as may be tried, by putting a little of it into our Hand and throwing it up into the Air ; for if it be well rectiffed, it will not fall down in Drops, as Water does, but it will be fo diffipated by the Air, that none of it will appear fenfibly on the Ground. So alfo if it be thrown upon a dufty Table, it will not gather into round Drops, but fpread it felf about, and mix with the other Bodies which it meets with, nay even with Scot it felf, which Water will not moiften.
67. Having thus thown what kind of Superficies that which is common to two Liquors, the one inclofed in the other, is; it may not be amiss to ftop a little, and examine what fort of Superficies that ought to be, which is between note, ofberse. two Liquors, the one contained in a Veffel, and the other not: But becaufe there may be fome Difference in this, according as the Veffel will be wetted or not wetted by the Liquor contained in it; it is to be obferved, that a Liquor there-
fore wets a hard Body, becaufe it immediately touches its Superficies, and that another Liquor does not wet it, becaufe it does not immediately touch its Superficies; but there is room leftifor the fubtil Matter to pars between the concave Superficies of the one, and the convex Superficies of the other.
68. That the Superficies of the Waier in a clean Glafs exactly fucli, is quite flat.
68. This being fuppofed; we conclude firf, that if a very clean Glafs, whofe upper Edge is of an equal Height all round, be exactly filled with Water, the Surface of the Water will be perfectly level and plain; becaufe the Air which touches it, does not prefs more upon one Part than upon another.
69. That the Superfficies of a Liguror. sobich woill ${ }_{30}$ veet a Glafs, ought to be Concave, if. the Glafs is not full.
Tab. III.
Fig. 7.
69. But if the Glafs be not full of Water, the Superficies ought to be Concave, I becaufe the Air which comes in at the Mouth of the Glafs, and circulates about the Glats and the Water, as if they were one continued Thing, cannot fo eafily turn to move along the internal Superficies of the Glafs, as continue its Motion in the Middle: From whence, being to go out again at the Mouth of the Glafs, it defcribes a Curve in a contrary Pofition, to what it did when it entered in, much the fame as is defcribed in the Figure; fo that the Water is preffied more in the Middle than on the Sides, and confequently muft rife towards the Sides.
70. Why the Conciave Superfacies is not pherical.
71. That the bollow Surtfact of the Waterina Smaller Tube not full, is Spherical. Tab. III. Fig. 8.

[^27]ABC reprefents the Surface of the Water, which is therefore above the Level, and manifeflly higher at A than at C, becaufe that Pofition of the Water agrees better with the Motion of the Air, which would be more turned back, and with greater Force in the Place D, if the Water were more upon the Level DBE.
72. The fame Caute, which hinders the Water from growing level in an inclined Tube, hinders a Botrle alfo which has a very ftreight Neck from emptying it felf, when it is near inverted, and the unequal Height of the two Parts of the Water which endeavour to come out at the fame time, fhould feem to deftroy the cquilibrium of the Air's Preffure, which repels and fupports it by its Weight. For Example ; Though in the Bottle here defcribed, the Height of the Water which endeavours to come out of the Bottle at C, is greater than of that at A, and therefore thould feem to be able to force the Air to dercend at C, and to rife again by A, and get into its Place ; yet this does not happen, becaufe the Parts of the Air now defcribe the Curve $A B C$; and the Difference of the Weight of the Water at A, above that at C , is fo very fmall, that it is nor able to make the Air to defcribe a Line that is more curved, as it muft do, if the Water which defcends by C, took up part of the Width of the Neck.
73. If a little more Water be poured into a Glafs of the common Shape, than will fill it exactly full; as that which would run over the Sides, is more expofed to the Power of the Air than any other Part is, it follows, that the Air ought to pulh it back towards the Middle, where it ought to be higher, in order to its more convenient Motion. And thus we fee that a Glafs may be filled beaping full, and that the lefs the Glafs is, the nearer does the Superficies of the Liquors it contains approach to a Sphere; becaure it does not faftain the Weight of fo great a Quantity of Water, and the Force of the Air is fufficient to bend it in this.
74. If the Glafs be greafy, or for any other Reafon will not be made wet, whatever Quantity of Water be put into it, I the Superficies ought always to be convex, becaufe its Figure does not fo much depend upon the external Air, as upon the Air that flows between the inter-
r. The Superficies ought always) Thus the Superficies of Quickfilver in Glafs Tubes, is always gibbous, becaufe it does not wet the Glafs, but
its Superficies is concave, as that of Water is in Glafs. See the Notes ons Art. 69. aboze.
nal Parts of the Glafs, and the external Parts of the Liquor which it contains; which by its continual moving round, blunts the external angular Parts which refift its Motion, and forces them towards the Middle, or elfe forces them inwards, and fo caufes the Water to raife it felf up towards the Middle, where the Air oppofes its Paffage lefs, becaufe it cannot get thither, but by altering and bending its Courfe.
75. Why fome Bodies fioating oin the Tor of the Water, are carried from the Middle to the sides. 75. From what has been faid in the two foregoing Articles, we infer, that the Air which depreffes the Middle of the Superficies of the Water in a Glaifs not full, ought from the fame Caule, to drive light Bodies which fwim upon it, and touch it immediately, towards the Sides: This I have experienced in fmall Globules of Glafs full of Air and clofed up, which an Enameller made as light for me as he could; for there being put towards the Middle of the concave Superficies of the Water in a ftrait. Glafs not very full, it was very pleafant to fee them driven from thence to that Side of the Glafs which was neareft to them.
76. That this 76. Becaufe I made ufe of a fmall Globule of Glafs, and. Motion is inot caufed by Atstadion.
a Veffel of the fame, in this Experiment; fome Perfons. perhaps, may imagine, that this Globule moved towards. the Side, becaufe it was attracted by the Glafs: But it is very eafy to confute this Imagination; for not to mention the Obfcurity of that Word, the fame Thing will happen in a Veffel of Wood, or of any other Matter whatfoever, ${ }^{1}$ which we cannot fuppofe to have any Sympathy with the Globale.
77. That the fame Bodies ought to go from the Sides towards the Aidaile in a Glafs heaping full.
77. But that which evidently overthrows this Opinion, and confirms that which I have advanced, is, that if Attraction had any Thing to do here, the Globule ought to move fwiftly from the Middle to the Side of a convex Superficies of the Water in a Glafs heaping full; for befides the Attraction, the Declivity ought to help its Motion. Which yet is not fo; but on the contrary, it movés from the Side towards the Middle, as it ought to do, if what I have affirmed be true; becaufe, as was faid before, it is the Sides which are moft expofed to the Force of the Air, and the fame Caufe which drives the Water from the Sides to the Middle, ought alfo to drive the fmall. Globule.

[^28]78. But it is to be obferved in thefe Experiments, that the Body which floats on the Top of the Water, mutt immediately touch it, or which is the fame Thing, muft be wetted by it, that the Air may be forced to move round them both, as if they were one continued Body. But if the Body which floats on the Water does not immediately touch it, or is not wetted by it; we experience the contrary; that is, the Body will defcend from the Sides towards the Middle, when the Superficies of the Water is concave, and from the Middle torvards the Sides when the Superficies is convex, becaufe the Parts of the Air which pafs under the Body deprefs the Liquor all round, which produces the fame Effect, as if, when a large heavy pherical Body was fixed upon the Declivity of a Mountain, we Thould take away the Earth equally all round it, and put Leavers under it to fupport it; for it is evident, it would by that means be difpofed to defcend to the Bottom of the Mountain.
79. It is to be obferved further, that when a Body which weighs more than an equal Bulk of Water fwims upon the Water, as a Needle made of Steel will do, the Reafon of it is this; that the Air which preferves it felf a Paffage between the Body and the Water, fupports it and hinders it from finking: For we ought not to think that it proceeds from hence, that the Parts of the Water are harder to be feparated near the Superficies, than deeper in, as we may be apt to imagine; for having caufed fome frnall Needles to be made of Glafs, which were lighter than the Steel Needles of equal Bignefs, and laid them gently upon the Water, they always funk down to the Bottom.
80. From hence, viz. that the Body dipped in the $\mathrm{W} T$ a- 80.1 Vhy Liter will be moifned, or not moifned, it follows, that the Water will rife up on the Sides of fome Bodies higher thar it is any where elfe, or that it will be depreffed lower; The Reafon of the Firft is, becaufe the Air which moves from one Side of the Veffel to the other, and paffes over the Body, permits the Liquor to rife in that may. Hollow which the Air cannot without great Difficulty turn into: whereas when it pafies under, as in the Second Cafe, it depreffes the Liquor all round. And of this a Multitude of Experiments may be made, and an infinite Number of them are made without any Notice being timken of them; for every time we dip our Pen into the Ink, we may obferve, that if it be moifned, the Ink will
$$
\mathrm{L}_{2} \text { rife; }
$$
times rife up
on the Sider
of fome Bo-
dies that are dipped in

79, How futctr Bualies as thefe, may ficat upon the Water.
 -

\qquad them a lititle . -

\qquad
rife ; and on the contrary, that the Ink is depreffed about the Pen if it is not moint.
81. Why the Water will rife confiderably in the
Part where t wo Pieces of Glays are fitted to each other, when they are dipped a little into it.
82. W'by the Water is feen to rife of it Self in fmall Glafs Tubes.
83. Why it dees not rife ane nithout End.
81. If two plain Bodies which the W ater will wet, fuch as two Pieces of clean Glafs, be put very near one another, and dipped a little way into a Veffel of Water; ${ }^{1}$ the Air which moves from one Side of the Veffel to the other, in order to get over the Obftacle that lies in its way, ought rather to pafs over the Top of the two Glaffes, than to defcend into that ftreight Place which is between them: So that the Water is not fo much preffed here as it is in other Places, where the Air can go without bending its Courfe fo much, and fo it ought to rife to a confiderable Height above the Level of the Water contained in the Veffel; and thus we fee by Experience that it docs.
82. And there is no Doubt but that the Water would rife ftill higher, if the two Pieces of Glafs were clofed on both Sides, for by that means almoft all the Air which moves crofs, without bending its Courfe, would be hindred from entring in. Or, which is the fame Thing, we may take a very fmall Glafs Tube open at both Ends, and dip it in the Water, for then the Air cannot enter in by the Sides; fo that the Water mult rife very high in fuch fort of Tubes, if they be very flender: And indeed I have made the Water rife a Foot high in a Glafs Tube fo fmall, that one could fcace get a Horfe-hair into it.
83. However, we muft not conclude from hence, that it ought to rife on without End in thefe fmall Tubes; for it is ealy to fee, that the Water mult ftop, when the Weight of that which is rifen, tends downwards with greater Force than the Preffure of the external Air has to thruft it up.
84. That a 84. If the Tube be inclined, a greater Quantity of Wasreater Guninn- $^{\text {tity }}$, will get in, becaufe, being fome way fupported by
tity rity of Water the Glafs, it does not tend downwards with fo great ought to rife
ins and inclined Ti:be.
85. Whay the Water rijes fometimes higher in the fmaller, thanz in the larger Arm of one invertid spphon.

Tab. I.
lig. $4 \cdot$

[^29]if the Water in the larger Branch, reaches up to the Height $A B$, it ought to rife to the Height C in the little Tube, to be upon the Level with the orher: But we may add, that if this Branch be fo fmall, I that the Parts of the Air cannot turn in it but with Difficulty, the Water will rife confiderably higher than in the larger Branch, fo as to reach to D, according to what was now proved.
86. There are few of thofe who enquire after a per- 86. An imapetual Motion, but when they fee this Experiment, for simary perpewant of rightly underftanding the Caufe of it, think they have found out fuch a Motion. And indeed it looks at firt Sight very probable, that if we take one of thefe Syphons, in the fmalier Branch of which the Water rifes very high, and bend this Branch a little lower than the Height which the Water rifes to, it might be fo ordered, that the Liquor with which it is filled might run out into the larger Branch, in order to rife up again in the fmaller one, and fo produce a perpetual Motion: But it is certain, that $=$ they are deceived who make this Conjecture; for befides that, the Branch of the Syphon, out of which the Water is to run, ought to be longer than the other, (which is not fo here, where the bent Branch is in the Room of a whole Syphon) it is eafy to fee, that the Water, the Moment it endeavours to come out at the End of this fmall crooked Branch, is more expofed to the Force of the Air, than that which is contained in the larger Branch; whence it follows, that its Paffage out mult be ftopped.
87. This will appear more evident, if we confider, that 87. That in B $_{3}$ when the End of the fmall Tube of a bent Syphon, whofe Height does not exceed that, to which the Water will commonly rife, be dipped into the Water, it will immediately be filled; but if the End of the longer Branch

1. The Parts of the Rir). It looks very probable, at firft Sight, as if the fiff Particles of the Air, either pafied over the Mouth of the littie Tube CD; or eife fticking in it, like little Pieces of Wood a-crofs it, fupported the Column of incumbent Air, fo as ic fhould not prefs upon the Water under it, with its ufual Weight: But by often repeared Experiments, it is found, that the Water will rife as high in finall Tubes, though the grufs sir be exhaufted. See The

Exper. of the Academ. del Cimento, Brandha p.55. It is evident therefore, that all thefe Phrnomena's are to be afcribed to Attraction. See the Notes above on Art. 69.
2. They are deceived) It is manifelt, from Calculation upon Mechanick Principles, That all Queftions about a perpetual Motion end in this. To find out a Weight heavier than it felf, or an elaftick Force ftronger than it felf. Which is ablurd.
be not depreffed lower than ufual beneath the Level of the Water in the Veffel, it will not run out into the Air, as it ordinarily does; whence we fee, that the Air pufhes it back with greater Force than it has to come out.
88. For a further Confirmation of a Thing which has
98. Acurious Experiment of the Prefjate of the Air. been fufficiently proved, I may add, that fo far is the Water from coming eafily out ar the End of a fmall Tube, that fometimes it will be forced to enter and afcend into it, when it was entirely without before: Which may be tried, by holding a very clean fmall Tube open at both Ends perpendicular, and putting a Drop of Water upon the external Superficies, which mav entirely ftop the Hole at the lower End, when it is got down thither; for then you will with pleafure fee the Tube filled in the fame manner as if the End of it was dipped in a Veffel of Water.
Eg. TVhat bic Canse of
Filltration is.
89. After what has been faid in the foregoing Articles, it is eafy to underitand what is the Caufe of the Filtration of the Chymifts: For the Piece of Woollen Cloth which they put upon the Side of the Veffel, in fuch a manner, as that one End of it is dipped into the Liquor, and the other End hangs down on the Outfide lower in the Air, refembles a bent Tube, in which the Water runs as in a Glass-Tube : And it matters not, if this Cloth or Woollen Tube be full of Holes on all Sides, for the Air which moves round it, preffes in the Water which endeavours to come out at them, fo that it is like one continued Covering.
90. That the 90. Since our Thoughts, or, if you will, our Conjectures

Porrms of hard and liquid Bodies as fuch, are not frbthantial Sorins. concerning bard and liquid Bodics are confirmed by 10 many Experiments, I think it fuperfluous to add any Thing more. Wherefore I thall finifh this Chapter, in only remarking two Things: The Firft is, That if Hardmefs and Liquidrefs confift in Reft and Motion, which have their Dependence upon fomething elfe; then there Forms are not Subftantial, but only 2ualities or Modes of Exiftence in the Bodies to which they belong.

9x. Secondly, That having explained the Nature on Hardrefs and Softrefs, I have at the fame time explained wherein Drynefs and Moifmefs confift. This is evident, if we underitand the Word Dry and Moift in the Senfe of the Antients, who did not diftinguifh them from bard and liqzitw: As.we may fee from hence, that fpeaking of Moift, they ufe the fame Greck Word as all Interpreters ronder binzoid or liguid indifferently. It appears further;

Chap. 23. of Naturar Philosophy.
that I have explained what the Nature of Dryne/s and Moiftne/s is, according to that Senfe which we now ure thofe Words in ; becaule by Dry, we underftand that which will not wet any Thing; and by Moif, that which will wet a Thing, which are two Properties which have been fully and exprefsly handled above.

C H A P. XXII.

Of Heat and Coldo

THESE Two Words have each of them two different Meanings : For Firft, by Heat and Cold, we underfand trwo particular Senfations in us, which in fome Meafure refemble thofe, which we call Pain and Pleafure, fuch as we feel, when we touch Ice, or when we go near a Fire. Secondly, by Heat and Cold, we underftand alfo the Power which Bodies have to raife the forementioned Senfation in us.
2. I think we cannot underftand what Heat and Cold, in the former Senfe of the Words, is, but only by Experience; wherefore our Curiofity will be fatisfied, and our Pains imployed only in enquiring what that Power confits in, which certain Bodies have to warm us, and alfo what that Power confiits in, which we obferve other Bodies have to cool us.
3. Ariftotle fays, that Heat is that which collects together homogeneous Things, or Things of the fame Nature, and diffipates heterogeneous Things, or Things of a different Nature; and Cold, he fays, is that which coilects together, Things homogeneous and heterogeneous indifferently. The common Inftances made ufe of to prove this, are Fire, by the Heat of which, a great many Parts of Gold may be collected into one Mafs, or two or more Metals which are mixed together, may be feparated : And Ice, which by its Coldne $/ s$, unites together, Water, Stones, Wood, Straw, fo as to compofe one Body of all thefe together.
4. But it is to be obferved, that the Infance here given, is fometimes faulty; for if a Mass, compored of Gold, Silver, and Copper, be put upon the Fire in a Crucible, it is not true, that thefe Metals will always clear themfelves of each other, fo as to be feparated and placed in
3. How AriItoile defcribes Heat and Cold.
2. In wbat Senfe it is, that we propofe to ireat of Heat and cold.

1. That the VVords, Heat, andCold,bave two different Meanings.
their proper Order, one upon another, according to their different Weight. Oil the contrary, if feveral dittinct Pieces of Cold, Silver, and Copper be put together into a Crucible, the Fire will not fail to mix them all together.
2. That the Property of Fire, is rat ther to diffipart than to sollect together.
3. That Ariftotle bras onby faid nohat Heat and Cold do, but not what they are.
4. It is true, that if the Fire acts a very long time upon a Mafs, compofed of Gold, Silver and Copper; the Silver and Copper will go all away in Smoak, and fo leave the Gold alone in the Crucible. But we ought not for this Reafon to fay, that the Fire has a Property of collecting Things together, becaufe this perhaps is only accidental, that is to fay, by difflpating the Firft, which refifts its Force lefs, the Gold remains alone, or laft, becaufe it refifts its Force more. In the fame manner, as if Saw-Duft, and the Filings of Lead were mixed together in a Plate, we can with our Mouths blow away the Saw-Duft, and leave the Lead-Filings alone in the Plate. For it is evident, that it is only the Refiftance of the Pieces of Gold, which is the Caufe of that Metal's being thus feparated from the Silver or Copper. For if it be left after this upon the Fire, it-will continually diminifh by little and little, till it intirely vanifhes, as Refiners have tried; and this is what they mean when they fay, there is no Gold of 24 Carats, that is, none that can be refined to pure.
5. But if it was true, that Heat always collected together homogeneous Things, and diffipated heterogeneous ones, and that Cold collected together all fort of Bodies indifferently, this would indeed teach us what Heat and Cold do, but not at all tell us what they are: But Arifotle has been excufed in this, by faying, that in defining Heat and Cold as he has done, he did not fo much follow his own Opinion, as that of others.
6. What the 7. I don't know whecher his Interpreters have hit right, opinioir of his when they pretend, that his Opinion was; that Heat, in Snterpereers the Fire, for Inftance, is fomething in the Fire like that Hent anit Co.d is. Senfation which is railed in us, when we approach the Fire. And fo likewiic, that Cold in Ice, is fomething in Tce very like that Senfation in us, which arifes from touching it. I Becaufe in his II. Book of the Soul, Chap. xii. after he had fhown that Senfation is a Paffion, he fays, that the Moment any Senfation is rais'd in us, we become like the Object that raifes it.
[^30]
Chap. 23. of Natural Philosophy:

8. But whether Arijfotle were of this Opinion or no, thus much is certain, that they have no Proof of what they affirm; for it is no Proof to fay as they do, that thatio opinioun. the Fire cannot give that which it has not ; becaufe taking the Word give, in the Senfe here ufed, there is no doubt but that the Needle, when it pricks us, gives us Pain, and yet there is no reafon to believe from hence, that the Needle has in it any Pain like that which it caules in us.
9. Further, the Heat of the Fire, and the Cold of Ice being Properties or Qualities belonging to Bodies abjoflutely which every one acknowledges to be inanimate, they caunot be like the Senfations which we feel by their Means, becaule thefe Senfations belong to us as animate Creatures. And becaufe the fame Thing may fometimes happen to raile in us two different Senfations at the fame time, it will follow from their Opinion, that the fame Thing may be hot and cold at the fame time, which is impolfible; yet the Air which we breathe out of our Mouths, may at the fame time feel hot or cold according as it is differently applied to our Hands in blowing upon them.
10. By reflecting upon this Experiment, which fhows us, that the fame Air feels hot or cold, not only from its being applied in a different manner to our Hands, but alfo from the different manner of making it come out of nur Mouths; it is eafy to conjecture, that the Hcat of a Body confifts in a peculiar Motion of its Particles. And becaufe the nearer we put our Lips together, and make the Air come out quicker and ftronger, the lefs we feel the Heat, hence we conclude, that the Heat of a Body does not confift in the direct Motion of its Parts. Now whatever is in Motion, either moves on directly, or elfe has an unequal and different Motion, as it were about its own Center; from whence we may infer, that the Air which comes out of our Mouth, belides that direct Motion, by which the Whole of it is removed from one Place to another, it has alfo a great many of its Particles moved round with a circular Motion about their own Centers: By which means thofe which are applied to our Hands, with this fort of Motion, excite in us a kind of Tickling. And becaule it is this kind of Motion which raifes in us the Senfation of Heat, we ought alfo to conclude, that the Heat of Bodies coirffes in this Sort of Motions of. thair Small Parts.
```
*
```

10. Tor what confifts.
11.T7eRefermblance there is beswixt Heat and Pain.
11. So that what is in the Object is very different from the Senfation which it raifes, And this ought not to be thought more ftrange, than the Difference there is betwixt the Figure and Motion of a Needle, which pricks us, and the Pain which it caufes. For as it is evident from the Inftance of Pain, that the Soul being united to the Body, it is the Appointment of Nature, that certaia Perceptions of the Soul thould follow from certain Motions or Divifions which the Needle caufes in the Body: So alfo we ought to think, that Nature has appointed that from that particular Manner in which our Body is moved by the Fire, there fhould arife a particular Perception, and this is what we call Heat, taking it in the former Senfe of the Word.

I2. That Roaies may became bot, to woluich it is
sertain, nothing has smppersed but Motion.
13. The I. - wamile.
12. This is confirmed by Experience, which teaches us, that many Bodies are made capable of warming us, to which we cannot fufpect any Thing has happened but only Motion. It is to no purpofe to inftance in them all: I fhall content my felf with the following Example.
13. And, Firft, It is certain that when our Hands are very cold, we find by Experience, that if they be rubbed a little while tosether, we fhall feel a confiderable Heat.
54. The II. 14. Secondly, As was before obferved, Lime baving cold zixample. Water poured upon it, though it was before cold, will acquire fuch a Motion of its Parts, that they will be all difunited in a fhort time, and by that Means will become capable of heating us in fuch a manner, that it will be very painful to hold it in one's Hand.
35. The III. 15. Rotten Dung, that is, fueh as diffipates it felf by \#xample. little and little, becomes fo hot, as to ferve inftead of a moderate Fire in many Chymical Operations. And Chymiftry furnifhes us with many other Examples not fo common, which ought to be more known to the World than they are.
16. $\mathrm{Th}^{\text {me IV. }}$ Example. into a large Veffel in which is a little Aqua-fortis, it will immediately raife fuch a Fermentation, that the Bottle will feem quite full, and at the fame time will be fo hot, that we cannot touch it without being burnt.
17. Thev. 17. Further, If, as was before faid, Oil of Vitriol and Example. Oil of Tartar be mixed together, though feparately neither of them are combutible, they will immediately acquire an incredible Fermentation on a fudden, and at the fame time a very fenfible degree of Heat.

Chap. 23. of Natural Philosophy:

18. It is true, that in there Sort of Examples, it may with fome Reafon be faid, there is fomething that we do not throughly undertand, wherefore I Thall ftay a little, before I fay what the Caufe of thefe furprizing Motions may be: To come therefore to fome more familiar Inftances, we obferve, that two bard Bodies rubbed againjt one azotber, do fo agitate the Parts of each other, as not only to burn us when we touch them, but their Motion will increafe to fuch a Degree, as to fet each other on Fire. Thus in very dry Weather, the Wheel and the Axle-Tree of a Chariot, when it goes very quick, and in general, all Sorts of Engines which are made of Matter that will burn, and which move very quick, are apt to take Fire. Nothing is more common, than to fee a Wirible grow hot in boring a Hole in a hard thick Piece of Wood. So likewife, if we file or Jbarp a Piece of Iron or Steel it will grow fo hot fometimes as to lofe its Temper. And a Saw, which the Wood will not eafily yield to, acquires a very notable Heat. But nothing fooner takes Fire than a fmall Piece of Flint or of Steel, which is fruck off, and put into a violent Motion by ftriking thefe two againft each other. Now in all théfe Infances, there is nothing added to thefe Bodies but Motion.

I9. All the Antients who have confidered the greateft Part of thefe Experiments, have afferted that Motion is the Principle of Heat; which I acknowledge with them to be true; if by Motion they mean the Motion of the whole Bodies, which is the Caufe of the two Bodies rubbing againft each other; but if by Motion they mean the Motion of their infenfible Parts, I think they have not faid enough: For the Motion of there Parts, is the very Heat it felf of thofe Bodies.
20. I fee no Objection that can be made againtt this: For when they object, in order to fhow, that Motion is not 1 the Principle or Caufe, of Heat, that a Ball out of a Cannon which moves very quick, does not burn the Wood which it enters into; or that a Musket Bullet does not burn the Wood which it penetrates, though it be very dry ; this contradicts the Opinion of thofe only who pretend that Heat confifts in the Swifners of the Motion of aill forts of Bodies how grofs foever. But this Objection makes nothing againft us, who affirm, that Heat confilts in the different and violent. Agitation of the infenfible

[^31]Parts of Bodies. But when a great Bullet moves very quick, its Parts may be at reft with refpect to each ocher, and therefore it is no wonder that they don't burn the Bodies which they touch.
21. Wh. the 21. If we reflect upon what has been faid, we flall

Navic of a Wheel grows bot, and not the Fellows. not at all wonder, that the Bands of Iron which are about a Wheel do not grow hot as it does in the Middle; for though they defrribe larger Spaces by their Motion, yet notwithftanding this, their Parts are not agitated with refpect to each other, as thofe in the Middle are, which continually rub againft the Axle-Tree.
22. VWhy 22. We may very eafily anfwer a great many Queftions Picce of fron whenen fited, grows bot t_{2},unt not the Filic. which may be put to us by thofe who will not allow, that the Form of a hot Body confits only in the Motion of its fmalleft Parts: Thus when they ask, how it is poffible, that when a Piece of Iron fixed in a Vice, is filed, the Iron grows confiderably hot, but the File which moves upon it is fcarce warm at all : It is eafy to anfwer, that the Parts of the File moving upon the Iron, and continually grating it, not only with its own Parts, but alfo with fome of the Parts of the Iron which it has rubbed off, and which remain fometime between its Teeth, muft neceffarily excite a very great Agitation of the Parts of the Iron which is filed, and confequently heat it very fenfibly. But this is not the Cafe of the File; for though its Parts are grated as much as thofe of the Iron, yet becaufe it is longer, the fame Teeth do not twice together touch the Body which it grates, but there is always fome fmall diftance of Time, between the two Rubs of the Parts of the File, during which Time, that Place which may have begun to acquire fome fimall Heat, may lofe it again.
2 n. WVhy Yrox aphen it is filed grows botter than ather Aletals. 23. There are fo many Things to be confidered in this Experiment, that a fmall Difference alters all the Circumftances. Whence it is, that a Piece of Copper or Lead, when it is filed, ought not to grow fo hot as Iron, both becaufe Copper and Lead are not fo ftiff, and becaufe it is ealier to feparate their Parts than the Parts of Iron, fo that the File being never applied twice together to the fame Part of the Body which it grates, it cannot flake its Particles fo much: And this is fo true, that if we try to file a Piece of Copper, with an old worn File, which will thave off but a little at a time, the Heat will be as great as that produced in the Iron.

Chap. 23. of Natural Philosophy.

24. Now it any one asks, why, in fawing a Plank of 24. Vriby Wood, the Saw grows hot and not the Wood: I anfwer, sate grows that the Plate of the Saw, fticking in the Slit of the the VVoodo Wood, and being rubbed againft each Side, the Parts of it muft be fenfibly fhaken: Whereas it is evident, that the Plank ought not to grow hot in the Place againft which the Teeth of the Saw go, for the Reafon juft now given, viz. becaufe it cuts the Parts off; neither ought it to grow hot on the Sides, efpecially if the Wood be eafy to faw, becaufe the Saw advances further and further into the Slit, and fo does fcarce twice together touch the fame Part of the Wood.
25. It is true, that if the Wood be very hard, and difficult to faw, and if the Saw fticks in the Slit which it makes, the Plank will then become pretty hot; but we grox bos thall not be able to perceive it by our Touch, becaufe the Parts of the Wood being large, lofe their Motion in a Moment, and it will take fome time to pull out the Saw, and to open the Slit fo wide as to put our Hand in to feel. But though we cannot perceive it by our Touch, we may fee it with our Eyes; for the Places againft which the Saw for fome time grated look burnt, as if they had been in the Firc. And it happened fome time ago, that defignedly fawing a Piece of hard Wood, fixed in a Vice, in a Smith's Shop, with a Saw which fuck in the Slit it made, I at firft perceived a Smell like burnt Wood, and continuing to faw the Wood with greater Force, feveral Sparks came out of it.
26. The Experiment which feems to be the moft contrary to the Principle we have laid down, is, that if we drive with a Hammer a large Nail into a piece of hard Wood, we fhall not find it grow warm while it is driving in, but after it is in, and the Hammer does nothing elfe but beat the Head flat, then it will begin to acquire fome Heat: Yet is there nothing in this, but what perfectly agrees with our Notion of Heat. For as we make it to confift wholly in the Agitation of the fmall Parts of the Body; it is certain, that the Nail ought not to grow hot, while it is moved all together in entring into the Piece of Wood; but that it ought then to begin to grow hot, when it ceafes to move fo, and its Head begins to be made flat; for it is then only that the fmall Parts begin to be in Motion, and acquire an Agitation fufficient to Heat. And indeed, when the Head of a Nail is made flat, all that is done, is, that there are by that Means fewer Parts placed one upon another, and more by each
other's Sides, which cannot be, but by the Motion and Agitation of thefe Parts, which by their beating againft each other, caufe that trembling in which Heat confifts.
27. That Flame ought to bevery hot.
28. Having thus endeavoured to anfwer the Objections that might be made againft us; we come now to draw fome Confequences from what we have laid down; becaufe if thefe agree with Experience, they will help to confirmus in this, that we are not far from the Truth. In the firft Place then, let us confider, that feeing Heat confifts in a certain Motion, or a certain Agitation of the fmall Parts of a Body, it is certain, that the more the Parts of the Body are thus moved or agitated, the greater will the Heat be. Now it is evident, that I Flame is more agitated than any other Body which comes under our Senfes. For, for Example, it is this violent Agitation of the Parts of the Wood which nourifh the Flame, that makes the greateft Part of them fly away, and that of all the Wood that can be burnt in a Day, fo very little remains in Afhes; which we do not find in the forementioned Inftances, where there is only a moderate trembling of the Parts of the Bodies which is not fufficient to difunite them entirely. And this is the Reaion why Elame ought to be the hottelt Thing in the World, as every Body knows it is.
2S. How a
29. However, this mult be underftood with fome Refor it is not inconfiftent herewith, that there fhould be fome Bodics hotter, and more capable of heating than Flame, if they confint of more folid Particles, and confequently fuch as are more capable of Agitation; wherefore Iron, tho' it be not red hot, will burn more, if we touch it, than the Flame of Straw, or Spirit of Wine will do.
30. Vhb 29. The Difference that there is betwixt the Groffnefs Sea-Coal will of the Particles into which the Bodies that are burnt are
bura more thais any other. refolved, is the Caufe of fo much Difference in the Flames. Thus, Oak being more folid than Straw, but not fo folid as Sea-Coal; their Flames are alfo proportionably more or lefs burning or ftrong one than another: And the Ufe that Smiths make of them, according as they have occafion, fhows plainly, that Sea-Coal, acts more ftrongly than all other, becaufe when they would heat a
[^32]
Chap. 23. of Natural Philosophyo

Piece of Iron very much, they prefer this Coal to all

 others.30. When a Body melts, and liquifies, as I may call it, by little and little into Flame, it is impoffible but that the Particles which flip and rub one againft another, muft be diminifhed and broken into a thouland Pieces, and fo make a very fine Duft, which, that it may continue to move with that violent Agitation which it has acquired, gets off from that Mafs of which it was before a Part, and flies into the Air; which is what we call exhaling or evaporating: And hence it is; that the Fire has the Property of diminifhing all Bodies which it acts upon.

3I. This being allowed, there is no Difficulty in refolving that Queftion commonly asked, viz. How it is poffible that Heat fhould produce at the fame time two
31. VITvy Hear haydeess Clay and foftens V Vare. feemingly contrary Effects : Such as bardning of Clay, and Joftning of Wax. In order to this, we need only obferve, that Clay is compofed of two Things that are very different from each other, viz. Earth and Water; the Latter of which may very eafly be evaporated, before the Particles of the Former are confiderably thaken; and fince the Clay is foft for no other Reafon, but becaufe the Particles of the Water are in fome fort of Agitation, amongft the Particles of the Earth, to which they belong; it muft needs be, that when the Water is all evaporated, and the Particles of the Earth remain alone, they will reft againft each other, by their own Weight. and fo by that means compofe a hard Body. On the contrary, the Parts of Wax are pretty near equal; fo that the groffer Particles are agitated before any confiderable: Quantity of the fmalleriones can lly away. And therefore all the Particles of al Piece of Wax being a little in Motion at the fame time, compole together a foft Body.
32. It may be obferved alfo, that the Heat muft be but moderate, to barden Bodies: For if it be very violent, it will make them liquid. And thus we fee, that Flame melts not only Metals, but alfo Afhes, Sand, Stones, and Flints, of a Compofition of which all Sorts of Glafs are made.
33. From the different Degrees of Heat, and the various Texture of the Parts of which a Body is compofed, we may conclude, that very different Effects will be produced: For firf; If a Body, whofe Particles are very clofe to one another, be confiderably hot, Whatever the

Figure of thefe Particles be, fo they be not exactly round, when they are agitated or turned round their Centers, their angular Points, or the Parts which are moft diftant from the Center, mult neceffarily meet one another, and turn one another out of the Way; whence it follows, that the Heat will caufe a Rarefaction in this Body, as we fee in Milk, and all other Lipuors; and alfo in moft hard Bodies, in which few or none of their Particles fly off when they are hot: Thus red-hot Iron is fomething bigger than when it is cold.
34. $H_{0 n}$ it conderifes others.
34. But if the Particles of a Body be very frooth, and eafy to be put ins Motion, and yet are fo placed with respect to cach other, as fcarce to touch one another, fo that the Compofition is very rare; a very little Heat coming upon it, and fhaking the Particles, may caufe them to approach nearer one another, and the whole Body may be by this means condenfed. And thus we experience, that Heat when it melts Snow, reduces it into a lefs compafs.
35. VVhy 35. And becaufe the Particles of almoft all liquid BoWVater, when it is very near freeziny, is taree than when it is not fo cold. dies mult every Moment bend themfelves, or fome way alter their Figure, in order whereunto, they mult be moved with fufficient Force; therefore if the Heat, or that which forces them to move, or fo agitates them as to make them Liquid as ufual, does almoft wholly ceafe, all that the Particles can do, with that little which they have remaining, will be to move themfelves without bending fo much, as to join as near as they can together: And then the Liquor will be rarified a little, and after it is fo rarified, the Addition of the leaft degrec of Heat, will cuufe its Parts to approach nearer one another again. Thus Water is a little rarified before it freezes, and is condenfed again by the leait Heat that can be. But becaufe fome Skill and Pains is requifite to prove this by Experience; I will fet down the Means I made ufe of to make it appear fenfibly.
36. Ail Experiment to Show that
Fater, when it is entrcmely cold, is rariffed.

Tab.IIr.
Fig. 10.
36. I caufed a Glafs Veffel to be made like that in the Figure, the largeft Mouth of which is at A , and the other at B, the End of the fmall Tube BC, which is very flender : I poured Water into the Hole A, 'till the Veffel was fult, and confequently 'till it arofe up to D , in the fmall Tube, then I ftopped up the Mouth A clofe with foft Wax, and a Hog's-Bladder tied on: Having thus prepared it, if the Heat of the Air be fo diminifhed, that
that the Water be very near freezing, * it will fwell, and rife up to the Mouth B, where it will fometimes run over a little: Then, if we put eur Hands or any. other Thing that is warm, to the Veffel, we thall fee the Water condenfe it felf, and fink in the finall Tube almoft down to the Bottom C. It is true indeed, that if we continue to heat the Veffel, the Water contained in it, will begin to dilate itfelf again, the Reafon of which, is that which I have now given.
37. Becaufe we can move our felves with greater Eafe in the Air than in the Water, this is a Proof that the Parts of the Air are much fincr than thofe of Water. Wherefore the leaft Heat that can be, mult dilate the Air; and confequently, The Quantity of the Rarefaction of the Air, will very exactly flow the Quantity of Hat bere on ibe Earth; that is to lay, we can judge that it is hotter, one Day of the Year than another, by oblerving in which of thefe two Days, the Rarefaction of the Air is greateft.
38. Now in order to make this Rarefaction fenfible, there has been invented in our Days an Initrument called a Thermometer, pretty like that in the Figure: DE is a very fmall Tube of Glafs about two Foot long, like a Neck belonging to the Bottle A, which is Glafs alio, and about as big as a Tennis-Ball. The lower End is bent and made large, fo as to form another Bottle marked F , which needs not be fo big as the Bottle A, and has a fmall Hole made in it at B .
39. The Thermometer is at firft entirely empty, that is, full of Air only, part of which is forced out, by heating the Bottle A, at the fame Time that the other Bottle F is dipped into a Veffel of Aqwa-fortis, tinctured of a Green Colour, by diffolving a Piece of Copper in it. We choofe Aqua fortis rather than common Water, becaufe it is not fo fubject to frecze, and does not fo eafily evaporate. As the Air remaining in the Thermometer grows cool, it has not Force enough to preferve that Bulk which it had before, and fo is obliged to retire up into the Glafs, and leave Room for the Aqua-fortis, which by its own

[^33]
37. That the dyantity of Heat, may be dectrmincd by the Rarefaation of the Air.

Tab. IIT. Fig. 10.

Weight, affilted by that of the external Air, gets into the Bottle F, and from thence rifes up in the Tube towards

Tab: IV. Fig. I. C. After this, the Inftrument is taken out of the Veffel in which it was dipped, and without doing any Thing more than fixing it in a Wooden Frame, marked with feveral Divifions, it Chows how much hotter it is at one time than another.
40. The Rear " 40 . For the more the Green Liquor is forced to defon of this USe. fcend by the Rarefaction of the Air in the upper Part of the Tube, the hotter it is in the Place where the Thermometer is fixed: And on the contrary, it is a Sign of greater Cold, when this, Liquor rifes higher, becaufe this fhows that the fame Air has not Force fufficient to preferve its Bulk, but is obliged to give way to the Aqua-fortis, which the Weight of the external Air that preffes upon the Hole B, continually forces to rife up as high as it can in the Tube DF.
4r. That this 4I. However, we muft take care not to be deceived Thermometcr in the Judgement we make of the Heat, by barely look-
does yot ex- ing on the Thermometer ; becaufe the Weight of the Air ailly difini- ing on the Ibermometer; becaule the Weight of the Air
suilh all the being not always equal, it may be, that the Air will prefs Differences of more upon the Liquor contained in the Bottle F, at fome
the Heat. Times than at others, and confequently force it to rife higher in the Tube FD, and may occafion us to think that it is colder than it was before: when perhaps the Heat of the Air was neither greater nor lefs.
42.ADC- 42. This occafioned the making another Soit of TherScription of mometer not long fince, which has but one Bottle of Glafs monther Ther. mometer. only, and has a long flender Neck as is here reprefented. At the Hole A is put in as much Spirits of Wine as will fill the Bottle quite full, and the Neck alfo as high as the Place marked B, and then putting the End A into the Flame of a common Lamp. fuch as Workmen ufe, ftop up the Mouth there, and then the Thermometer is finifhed. Wine dilate and rife above B, and fo force the Air in the Part of the Neck BA to condenfe. Which it may eafily do, becaure when it was inclofed here, it was very much dilated by the Flame which melted the Glafs, in order to ftop the Hole A. On the contrary, when the Weather grows cold, the Spirits of Wine contract into a lefs compafs, and defcend below the Place marked B, and permit the Air to extend it felf beyond its. Limits. By this Thermometer therefore we judge whether it be more or lefs hot, by the rifing and falling of the Spirirs of Wine; and we need not fear

Chap. 23. of Natural Philosophyo
the Inequality of the Weight of the Air, becaufe it cannot get in, to make any Alteration in our Obfervations.
44. Though the Fault in the foregoing Thermometer is 44. A Deremedied in this, yet has this another of as ill Confe- fect in this quence, viz. that becaufe the Spirits of Wine dilate and condenfe but very flowly, we cannot foon enough perceive the Alteration that is made in the Heat or Coldnefs of the Air. And there is another Fault ftill, (if it be not made larger than they ufually are) which is, that the Spirits of Wine, being not capable of a very great Rarefaction, its Rifing and Falling in the Neck of the Bottle will not be of fo great Length, as to diftinguifh the fmall Changes that happen in the Heat of the Air. But one Remedy of this, is, as I faid, I to make the Thermometer very large. I have one in which the Difference betwixt the greatef and leaft Height of the Spirits of Wine is above three Foot.
45. After what has been faid concerning Heat, there remains nothing more to be explained, but that which we experience in Lime, whens either Water is poured upon it, or it is put into Water: And this may ferve to explain ed upon ito why other hard Bodies grow hot as foon as certain Liquors enter into their Pores. In order to our Satisfaction in this Matter, we need only confider, that the Stone of which Lime is made, has fo very fmall Pores that the Water can fcarce enter into them; but after it is put into the Kiln, the Fire which penetrates it, carries away fome of the internal Particles, and by that Means enlarges the Pores fo much, that afterwards the Particles of the Water can eafily enter, being only furrounded by the ${ }^{2}$ Matter of the firft Element: Wherefore being freed from the Matter of the Second Element, when they enter into the Pores, they can eafily acquire all the Force of the Firft Element in which they fwim; fo that moving them very quick, and being alfo pretty grofs, they have Force fufficient to difunite the Parts of the Lime, and to carry the fmall Duft of it along with them: And it is principally in the Agitation of this Duft that the Heat of the Lime confifts.

[^34][^35]it ${ }^{46 \text {. There is no need of werting Hay in order to have }}$ it grow hot of it felf, it is fufficient, if it be beaped up wbilft it is green; for every Spire of Grafs contains in it felf enough of the Moiture which it fucks out of the Earth; the Particles of which go and come out of one Spire into another, and fwim at firft in the Matter of the Firt and Second Element, where confequently they have only the Velocity of the Second Element. But afterwards when the Grats grows dry, their Fibres Chrink, and their Pores grow fo fmall, that the earthy Juice which runs out of one into another, fiwims in the Matter of the Firft Element only, whofe Velocity it then obeys, and fo has a Force fufficient to move the groffer Parts of the Hay, and to heat them by that Means.
4. ${ }^{\text {4wbun it is }}$ is y_{y} 47. I faid exprefsly, that the Hay muft be heaped; when it is fiattered docs not heat. that the Particles of the earthy Juice which come out of one Spire of Grafs may enter into another with all their Motion; becaufe if the Hay be fcattered in the Meadow, the Juice which comes out of the Spires of Grafs, is diffipated in the Air, and does not enter again into others, to caufe that Agitation which is neceffary to produce Heat.
48. How two Lighors that are cold; grow hot when mixed together.
48. As to the Heat which arifes from the Mixture of two different Liquors, we need only imagine ${ }^{1}$ that their Particles are of fuch a Figure, that they can more clofely unite when they are mixed cogether, than when they are

1. That their Particles) Since there
is no fuch thing as this Firf Element,
by all thefe Experiments, it appcars,
that in Fermentations, the Particles
of Bodiess which almof reff, are put
into new Motions by a very potent
Principle (namely Attraation) which
alts uppon them oxly whin they ap-
proach one cinother; and carfes them
to meet and clafb with great vio
lence, and to grow hot with the Moti-
on. Newt. Opt. pag. 355 . But
becaufe Hear does not confít in eve-
ry Motion, but in a pectliar Mo-
tion (and of certain Particles per-
haps) of che fmall Particles of all Bo.
dies; if the Fermentacion or E -
bullition arifes from the Mixture of
fuch Sort of Salts as produce Cold.
(See the Notes on Art. 54 below)
the Fermenration may not only be
attended with no Heat, but with a
fenfible Cold. Thus Salt-petre mix-
ed with Spirit of Vitriol or other
acid Spirits; alfo volatile Salt of U -
rine with diffillce Vinegar or Spirit of Vitriol; alfo Sal.Armoniac and Corrofive Sublimate reduced to a Powder feparately, and then mixed together ; if diftilled Vinegar be poured upon them, they will be very cold during the Fermentation. (See the Philofoph. Tranfactions No. 274.)人ifo Sal Armoniac mixed with a double quantity of Oil of Vitriol will bubble up and fwell very much, and yet the Liquor at the fame time feel very cold. See the Exper. of the Acad. del Cimento, p. 153. Nay further, from the Motion of fome Salts which are naturally in all Water, it is, that Water it felf inclofed in a Clafs, and put into a larger Veflel full of Water, if red-hot Coals be thrown into the Water in this larger Veffel, will firf grow cold (as appears by applying a Thermometer to it) before it receives the Hear communicated by the Water which furrounds it.
feparate,
fepara:e; and when they are fo mixed, they fwim in the Matter of the firft Element only, at leaft, during that little Time we fee them ferment: Which is confirmed fiom hence, that after the Fermentation ceafes, we find many Particles united together, and that they compore a great many fmall hard Bodies.
2. Having thus explained the Form of a bot Eody, it will be eafy to determine that of a cold Body, which is the direct contrary: For if we confider, that Cold extinguifhes, or rather diminifhes Heat, there will be no Doubt, but that thofe are cold Bodies, which caufe that particular Motion in which Heat confifts to ceafe: Now we know that this Property belongs to three Sorts of Bodies : Firtl, to fuch as have their Particles at Reft with refpect to each other. Sccondly, to fuch whofe Particles may be in fome Agitation, but lefs than thofe of the hot Body to which they are applied; and Lafly, Such whofe Particles may be fufficiently agitated with a Motion proper to excite in us the Senfation of Heat, but is attended with a different Determination which clanges and ftops the Movion which the Parts of our Body are in, and therefore cool it. The whole Difficuity therefore is, whether Cold confifts in one of thefe Modes only, or in each of the Three.
3. Now fince there are Three Sorts of cold Bodies, we may affirm, that cold confifts in each of thefe thrce Modes. For; Firt, The Cold which is common to all
so. That there are tinree Surtt of coin 'Bodies. hard Bodies, cannot confift in any Thing but what is common to them all, viz in the Reft of their Particles: Further, the Cold which we feel in Summer-time, when we go into the Water, efpecially when we are up to the Middle, arifes from hence, that the Particles of the Water having lefs Motion, than our Bodies have in all thofe Parts which are near the Heart, they receive fome Motion from us, and at the fame time we lofe it. And of this we have a very convincing Pronf, becaufe the fame Water feels many times warm when we dip our Hands into it, becaufe they are not fo hot as our Breaft. Laftly, It is evident, that the Breath which comes out of our Mouths, when we contract our Lips, or the Air which we put into Motion with a Fian, in the Heat of Summer, ought to cool us; if we confider that the direct Motion of them diminifhes or alters a little the Determination and Agitation of that Motion which is in the Part of the Body where we feel it cool.
sr. VViby a cold Body, sohen it cools another, zrarms it Jelf. 51. For a Confirmation of this, we may oblerve, that cold Bodies cannot make any Alteration in the Motion of hot Bodies, without as much altering that Mode in which their own Coldnefs confifts; that is, a cold Body cammot cool another, without growing warm it Self, and fo we find by Experience.
4. VVhy fome Bodies are colder, than others.
5. We may obferve further, that the more Particles a cold Body has at Reft, the more thofe of a hot Body to which they are applied, ought to lofe of their Motion, in order to communicate of their Heat to the other. Thus Marble having more Particles at reft then Wood which has more Pores, and is full of a Liquid Matter which is in continual Motion, ought to feel colder than Wood.
6. VWhy the Air near a cold Body is other Places.
7. This alfo may ferve to explain to us, why the Air which is near Marble, or other Bodies, which bave very fmall Pores, ought not to be quite \cdot o warm, or ought to be a little cooler, thans that which is inz Places where fucth Bodies are not. For the groffer Parts of the Firf and Second Element, which cannot enter into the fmall Pores of thefe Bodies, muft neceffarily be reflected back from them, and for the moft part there is only the moft fubtil Matter about them, which is ready to enter in to them, or which cannot but come out of them, and confequently this is not able to agitate the grols Particles of the Air, which are proper to raife in us the Senfation of Heat.
8. Why Sinow feets colder than Marble,
9. When I fay that Bodies which have more Particles at reft, ought to feel colder than others which have fewer, I fuppofe that the Particles of each of there Bodies are equally fufceptible of Motion; for if we fuppofe that the Particles of a Body are very eafily to be put in Motion, and to lofe their Reft, this Body, though very porous, ought much rather to receive within it felf the Agitation of a hot Body, and by that means cool it, than another Body which has fewer Pores and more Parts at reft, but fuch as are not fo eafie to be moved. And hence it is, that when we touch Snow, which is very rare, it cools us much more than when we touch Marble, whofe Particles are much lefs capable of being put into Motion. 1

55, The

[^36]duces real Effects, fuch as Freezing, Breaking in Pieces, Rarefaetion, \&c.) is owing to fome Particles of Nitre and other Salts
55. The Nature of Hear and Cold being fuch as I have now defcribed, if you call to mind what was before faid concerning the Form of moift or liquid Bodies; it will be ealy to underfand how Heat and cold, which are direct contrary Qualities, may yet, though by quite different and oppofite Ways, produce one and the fame Effect, viz. Drying or:Hardning: As we experience in this, that the fame Things, as Clay, for Inftance, are made as dry by the Cold in the Winter, as they are by the greateft Heat in the Summer : In order to underftand the Reafon hereof, we need only confider, that the Parts of moift or liquid Bodies, fuch as Water, lofe all their Motion when it is very cold; wherefore fince fuch Bodies by this Means acquire the Form of hard or dry Bodies, it is not at all furprizing, that Clay which is compofed of Water and Earth, hould grow hard and dry, when the Weather is very cold, feeing the Water alone, to which all the Softnefs of the Clay is owing, freezes and grows hard. On the contrary, Heat caufing the Parts of the Water, by whofe Means the Matter of the Firft and Second Element kept the terreftrial Parts of the Clay in fome fort of Motion, to evaporate; thefe terreftrial Particles, by their own Gravity, will be-at reft with refpect to each other, and by that Means compofe a dry or hard Body.
56. Hence we may alfo fee the Reafon of a Maxim founded upon a Multitude of Experiments, viz. That Heat and Moifture are Principles of Corruption. For a Body is corrupted when there is a very remarkable Change in it, which doubtlefs may be effected by fuch a Motion as this: Now thefe two Qualities confift in this Motion.
57. On the contrary, by Reft, the Parts of Bodies are kept in the fame Situation, and Cold caufes them to be at Reft; wherefore we may lay this down for a Maxim, That Cold binders Corruption.
58. However we muft not affirm this to be' a general Maxim. For if a Body has Pores large enough to contain a good deal of Liquor, and thefe Pores be filled with Water ; becaufe Water cannnot freeze without dilating it felf, it may fo happen, that in freezing it may break
which are of certain Figures proper to excite that. Senfation, and to produce thofe Effects. And hence it is, that Sal Armoniac or SaitFetre, or Salt of Urine, and ma-
ny other Volatile Alkalizate Salts, make the Water with which they are mixed very cold. See above on Art. 48.
the Body, which contains it, in Pieces. And thus we fee that foft Stones, which are expofed to the Froft, crumble and are reduced almoof to Powder, before the Water which they have fucked in, can get out.
59. Why Frofl is havtfrib to Plants.
59. This perhaps is the Reafon of what is faid by fome of the Antients, That a bard and penetrating-Froft bas a Power of Burning. However, it very often happens, that we afcribe that Effect to Froft, of which it is only a very diftant Caufe, and which is immediately produced by Heat. For Example, when we fay, that Froft corrupts Fruits and the Buds of Plants, we ought rather to fay; I that the Heat corrupts them whilft the Froft is diffolving, becaufe it camot get into the Pores of the frozen Fruits, nor make the internal Parts fo foft as they were before they were frozen, without having firft intirely deftroyed the Connexion and Order of the other Parts, nor confequently without having altered the whole Compofition of the Parts.
60. Why critd dioes not hast fome Parts of the Plants.
60. For Proof of this we may obferve, that it is the extreme Parts of the Plants, which always contain in them more Moifture than the other Parts, that are almof the only ones corrupted by the Cold', and alfo that the Cold does not hurt them till after they are budded, for before they bud, the Cold does not hurt them; for which we can give ${ }^{2}$ no other Reafon but this, that Plants before they put forth their Buds, are not fo full of Watry Juices, and their Pores are large enough to fuffer the fubtil Matter, to put thofe Parts which may have loft their Motion into Motion again, without neceffarily deftroying the Comexion of thofe it firf acts upon, and which are more external, before it comes to apply it felf to the other which are more internal.
61. A Con- 61 . For a Confirmation of the Truth of this foregoing firmation of shis. Art. we may add, that in Northern Countries, where the Cold is fo great, that a Man cannot go into the Air without running the hazard of having the extreme Parts of his Body frozen; if their Nofos or Fingers be frozen, they do hiot lofe them, if they keep from the Fire, and rub thems with bandfuls of Srow.

[^37]'Clexc in bis Phyficks, Book V, Chat. xiii. Sect. 65. Though this Defeet does not appear till the following Heat hrow's it.
2. Noother Reafon)' See the Notes on the foregoing Art.
62. Having thus explained the Four principal Qualities 62. That the that come under the Senfe of Fceling, viz. Hardnefs, 2nalities of Liquiduefs, Heat, and Cold; there is no Difficulty in any and Smoothother which may come under the fame Senfe, fuch as nefs have no Rough and Poli/bed. For all there Qualities do fo clearly Difficuty in follow from the Difpofition of the Parts of Matter only, that there is no need of any Explication of them; wherefore I fhall pafs on to enquire into the Nature of Taftes.

CHAP. XXIV.

Of TASTES.

THE Word Tafte is ufed in Two Senfes. For Firt, it fignifies that Senfation which we commonly have when we drink or eat. Secondly, we undertand by this Word fomething, I know not what, in the Meat and Drink in which the Power of raifing this Senfation of Tafte in us, confifts.
2. Though Tafte in the former Senfe of the Word, cannot be exactly defcribed, nor particularly known but by Experience, yet we may make this Obfervation, that perceive Taffe in all Men have not the fame Tafte when they eat the fame Meat, as appears from hence, that fome Men can eat with Pleafure thofe Things which others have an Averfion to: Whence we may conclude: that it is the fame with Tafting as with Feeling: For if we touch in the fame Part, two Perfons, the one in perfect Health, the other jutt recovered of a Diftemper, they will be very differently affected, viz. the one with an agreeable Tickling, and the other with an intollerable Pain; in like manner the fame Meat may caufe different Senfations in different Perfons.
3. As to Tafte in the other Senfe of the Word, which we are principally to infift upon, Arifotle's Opinion is, DpinionconnThat it is a Quality or Property of a moift Body arifing Tafes. from an earthy Dryne s, and a Heat on being frefh boiled. This Definition contains Three Things, every one of which have fome Refemblance of Truth. And firt, I think Ariftotle had Reafon to fay, that Tafte is a Property of a moilt or liquid Body, becaufe thofe that are perfectly dry or hard, have no Tafte 'till they are mixed with our Spittle. Further, if we confider that Water has fcarce a-
ny Tafte, and Air none at all, though they be both moilt Bodies, we muft confefs, that he had Reafon to add fomething more grofs, and of an earthy Nature. Laftly, he ought to bring in Heat, becaufe we find by Experience, that in many Fruitss it caufes certain Taftes which we did not perceive in them before they were prepared.
4. That Ariftote has not explained what Tafe is.
5. 1 MiS take in the Commentators atpon Ariftotle.
4. The Followers of Arifotle will readily agree to that Explication which I have given of his Definition of Tafte; but it muft be owned, that though he has faid nothing but what is true, yet has he given us no Information at all; becaufe he has not explained what that Affection or Property of Body-is which caufes -Tafte, nor wherein it confifts.
5. Some have attempted-to fupply this Defect, by faying, that it is a Quality very like that Senfation which it raifes in us; but they are not at all aware what Inconvenience this brings us into: For befides that this gives to inanimate Bodies a Mode of Exiftence, which does by. no Means belong to them; it would follow from this Opinion, that two Men could never have different Taftes of the fame Meat or of the fame Drink, contrary to, what we have before proved.
6. On the contrary, fince we are already affured, that when the fame Meat caufes different Senfations in two different Perrons, one of them muft neceffarily have a Senfation different from that in the Thing which raifes the Senfation, we have Reafon to think the fame of the other likewife. It is probable therefore, that the Faculty of Tafting: in us, is very like the Faculty of feeling Pain; that is to lay, in order to bring this Power into Act, nothing more is required on the Part of thofe Bodies which caufe Tafte, but that they move I the fmall Fibres of the Nerves of the Tongue in fuch a manner as they ought. to be moyed, and as Nature has appointed, in order to the Perception of Tafte; the fame as in order to feel Pain, nothing more is requifite but to move in a certain manner the Nerves which are the Inftruments of Feeling: And becaufe nothing can move another, unlefs it be in Motion it felf, and nothing can be applied to the Nerves of the Tongue, fo as to have any Effect upon them, unlefs it be of a certain Bignefs, and of a certain Flgure :

[^38]
Chap.24. of Natural Philosophye

I therefore think, that the Form of a Body which caufes Tafte, confifts in the 1 Bignefs, Figure and Motion of its Particles, and that from the Difference which there may be in thefe Three Things, there may arife different Taftes.
7. And this is confirmed by a Truth, which follows from what I have fuppofed, namely, that if the Particles of a Body be fo fubtil, that they will fcarcely or not at all move the Organ of Tafte, that Body will have no Tafte. And thus we find by Experience, that Water has fcarce any Tafte, and Air none at all.
8. We may alfo give a particular Reafon why Air has no Tafte, viz. becaufe it fwims upon our Spittle without mixing with it, fo as to make any Impreffion upon the Nerves of the Tongue; by which we may alfo underNerves of the Tongue; by which we may alfo under-
ftand why fat Liquors have not fo fharp a Tafte as thin
Liquors have. Liquors have.
9. Further, if a Body be of fuch a Nature, as that none of thofe Parts are feparated from it, which are capable of penetrating the Pores of the Tongue, in order to move the Fibres of the Nerves, that Body ought to have no Tafte. And fo we find, in moft Metals, and alfo in Glafs and Flint Stones.
10. Nor are we to think that there is any Thing in there Bodies, that caufes them to have no Tafte, but only, the not being divided; for the Salts which belong to the Compofition of Glafs, tatted very ftrongly before they were concreted; and Metals which are reduced to a very fine Powder by the Chymifts, are of fo ftrong a Tafte as not to be born.
11. Since Heat always increafes the Motion of a Body; and fince it is allo very certain, that the more a Body is in Motion, the more capable it is of moving others to which it is applied; it follows, that. when Meat is hot, it muft neceffarily have a ftronger Tafte, than when it is cold; as every Day's Experience fhows us:
12. It is alfo very eafy to fee, that the Heat, in making Meat ready, caufes the Particles to ftrike one againft another, fo that the Corners of many of them muft be

[^39]whether the Particles of the Salt only, or any other Particles, be the Caufe of Taftes, it comes to the fame Thing; for we muft neceflarily at laft have recourfe to the Bignefs, Motion and Figure of thofe Parricles. See the Notes on Art. 3^{8}.
7. Why fome Bodies have no Taffe. -
8. A particular Reafor woby Air has no Tafic. "... is 9. Why bara Bodies for the mofe part. havenotafter な $\cdots x^{2}$ 10. How Metals may acguire a very firong Taftie.
11. นाँ
warm Meatshave a frong-
afte thanthofc that arecold.
broken off, and they by this Means divided into fmaller Particles than they were before, and alfo of a different Eigure; and this is the Reafon, why Meat, when it is made ready, has a different Tafte from what it had when raw.
13. As to the Difference that there is in Taftes; fince
13. That there ought to be a great many very different Taftes.
… i.....
14. AMif. take of thofe swo think: that all Taffes arife from a Mixthre of two Extremes.'
15. That Sweet oxght not to be oppofed to Bitter.
'....'
\cdots
$\cdots \cdot 1=$ feems rather to arife from the Mixture of the other Two, as we experience in Fruits, the Sweetnefs of which feems, to be a Medium, betwixt an Acid and a Bitter.
16. What Acidnefs confifs in.
every I atte, would be to undertake a Thing impoffible, and there are many Things wanting in order to fpeak with Certainty of the principal and moft common ones. However amonglt thefe, fome feem more eafy to be underftood than others, fuch as Acid or Soure like Citron-Juice. For as this Tafte pricks the Tongue, we may from thence conclude, that Bodies which affect us in that manner, confift of a great Number of long and fiff Particles, which in fome meafure referible finall Ncedles.
17. Why all Fruits before they ate ripe are foure.
17. This will feem the more probable, if we confider, that this foure Tafte is common to all Fruits before they are rips; for this is a Sign that Sourenefs conlifts in fome- thing which is common to them all ; but we cannot conceive any Thing elfe common to them all, but this Difpofition of their Parts, for they are all compoled of the Jivice of the Earth, which ftops in the long ftreight Pores of the Stock and Branches which bear the Fruits.
18. That

Chap. 24. of Natural Philosophy:

18. That we may underftand fomething of other Taftes, 18. Whiat the we may confider the Progrefs of Fruits 'till they come Trect arid to Maturity; for if we can but once know what Figure Frriits sonffis the Particles are of, when we experience a certain Tafte, in.
it will be ealy to conclude, that this Tafte 'confifts in this Sort of Figure. Firft then, fince all Fruits are ripened by the Heat of the Earth and Air: (whether this Heat be caured by the Rays of the Sun, as commonly happens in Fruits chat grow in Gardens, or whether it be produced by Fires kindled under or upon the Earth, as when Fruirs are made to grow in Houfes, in the middt of Winter;) we cannot help thinking, that a great many Particles of thefe Fruits are put into fo great Motion, as to ftrike againt each other in different Manners, fo that. fome of the longeft of them are broken into fhort ones, others have their Points only beaten off, and orhers are made entirely round. And then it is, that the Fruits have a fweet acid Tafte. Whence it is reafonable to conclude, that the fweet acid Tafte of Fruits confifts in this, that Jome of their Particles are long and 今tiff, and prick the Tongue, at the fame time that a great many otber of thems are lefs penetrating, and 'Jo fip over the Fibres of the Nerves, without producing any thing more than a kind of Tickling.
19. We may obferve furcher, that the riper Fruits grow, the more their Particles are broken, blunted and made fmall; wherefore fince the Fruits are then fweeter, we ought to conclude, that the great Sweetne f f of Fruits arifes from hence, that they have a far greater Number of thofe Particles which can only tickle, than of thofe which prick.
20. But if Fruit continues ripening too long; there is no doubt, but that all its Particles will be fo bruifed, that none of them will be able to prick the Tongue agreeably, but they will only tickle it in a difagreeable manner: Now Fruits when they are too ripe, become bitter; whence it is reafonable to prefume, that Bitternefs confjefs in this, that all the Particles are fo broken, blunted; and made Sinall to that Degree, that there rennains no long and ftiff ones amongft them.
21. And this is confirmed from hence, that in thofe Things which are made ready by Art, the Parts of them which are burnt; and whofe Particles are beaten one againft Bituernect Bitternefs conffest ing: another, and have their Corners broken off, are always become bititere. bitter, as we experience in Crufts of Bread, and in Roaftmeat when laid too near the Fire.
22. Whby freet Things may be rejob vid into two other, the one acid, and the other bitter.
23. The Nature of Soure, Sweet and Bitter being thus explained, we fhall no longer be furprized, that fweet Things, fuch as Wine, fuppofe, may be refolved into two other, the one of which is foure, or acid, the other bitter; for that which makes any Thing fweet, (with fuch a Sweetners as is agreeable to the Tafte) is compoTed of two Sorts of Particles, in the ore of which Acidnefs confifts, and in the other, Bitternefs.
24. Whybit- 23 . Neither fhall we any longer be furprized, that ter Things are beating, and acid Things cooling.

Orange-Peal, Ireacle, and many purging Medicines have a heating Quality, and that acid Things, fuch as the. Fuice of Orange and Verjuice, are commonly cooling; fince we are affured, that Heat confifts in fuch a Sort of Motion, as the fubtil,' round and blunt Particles of bitter Things, are capable of exciting and continuing; and that on the contrary, the long Particles, of which acid Things are compofed, being fomething of the Nature of Water, are more proper to hinder Motion, that is, to quench Fire, than to kindle it; wherefore they ought to be reckoned amongft cold Things.
24. How a bitter Thing may be cooling.
25. That the Alteration of Tafes arijes from the $\mathcal{A l}$ teration of the Figure of the Particles of the Body sobich we saffe.
24. Neither is it inconfiftent with what has been faid, that we fometimes find our felves cooler than we were before, upor eating bitter Things; for there are fome of them fo eafy to be corrupted, that they can produce but a very fmall Heat, fuch as is fcarce to be perceived; but yet this Heat may be enough to caufe fuch an Agitation in the Particles of our Blood, as to carry off fome noxious Matter which made it move too quick before, and by this Means it will be put into a more quiet State; and thus we may feel the Heat abated, and our felves cooler than we were before.
25. I fhall not infift any longer upon the Explication of particular Taftes. It would be very tedious to go through them all, and require a great Number of very exact Experiments, which I have not made, nor perhaps ever thall. But to confirm my own Opinion as much as I can, that their Difference confifts in the different Figures of the Particles of the Body which we tafte; I will examine one particularly, and make it appear, that as often as our Reafon fhews us, that there is any Alteration in the Figure of the Particles, Experience fhews us alfo that there is fome Alteration in the Tafte.
26. Let us take Wine for an Example, and confider it from the very Beginning, 'till it degenerates into fomething that is not at all like Wine. I obferve in the firft place, that the Moifture of the Earth, becaufe it is com-

Chap. 24. of Natural Philosophy.

pofed of the molt minute Particles of it, has fcarce any Tafte, and though in the Pores of the Woöd of the Vine it grows in groffer Particles, and fuch as are able to move the Nerves of the Tongue ; yet becaule it fticks among the Parts of the Wood, and is not eafily difingaged from it; therefore "it excites but a very fmall Senfation in thofe who chew the Wood.
27. Further, fince the Particles of the Juice which get into the Air and diftill through the Stalk of the Bunch, in order to form, the Grapes, ftick together, and cannot eafily be feparated; it follows, that they can apply themfelves to the Superficies of the Tongue only, and conféquently that they can raife but a fmall Senfation fcarce to be perceived. And fo we find by Expe-
28. But.fome time after, when the Particles, of which the fmall Grapes are compofed, are feparated from each other, either by the Heat of the Air which agitates them
28. Whence arijes the very. Shatp Tafie of Verpuice. gently, or by the Acceffion of more fimilar Particles which thruit themfelves in to increafe the Bulk' of them; it is manifeft, that they ought then to act feparately, and to raife the Senfation of a very Tharp Tafte, fuch as we experience in Verjuice.
29. And the Heat of the Air, which increafes as the Fruit ripens, continuitg to move the Particles of the Grapes, it is evident, that they muft be more and more blunted thereby, and fome of them made fo very frall, as only to tickle the Tongue agreeably, and to excite that Senifition of Sweetnefs. which we feel in chewing the ripe Grapes.
30. We fee alfo, and it is an Obfervation worth taking Notice of, that if it be wet Weather about the Time of gathering the Grapes, the Water which finks into the Earth, will afford too much Nourifhment to the Grapes: Wherefore as there are too great a Number of long Particles, which there is not time for breaking or blunting, it follows, that the Grapes will not be fo fweet as they would otherwife have been. And this is often found by Experience: For if it rains a little before the Vintage, the Wine is fharper, or, as they call it, harfher. This the People of Languedoc feem to be aware of, whoare at the Trouble, a little before the Seafon of gathering the $m u f_{c a-}$ dine Grapes, to twift the Stalks of all the Bunches, that fo they may ripen, and not receive any more new Noutifhment.
\therefore
31. The Reafon why new VVine is swect. it is worth obferving, that if we ratte of the Juice of the Grapes juft, after they are preffed, there ought to be very little Difference from the Tafte of the Grapes themfelves; and it ought alfo to continue its Sweetnefs for fome time after it is put into the Veffel, provided the Veffel be well ftopped. For though, while it is working, many of the long Particles which are intangled in one another, have an Opportunity of getting clear, and fo ate capable of pricking; yet however they cannot caufe any fharp Senfation, becaure they act in Company with a great many others which have had fufficient time to be broken and made fmall, having been preferved in the Veffel carefully ftopped up: And this agrees very well with thie fweet Tafte which we find in New Wine before it is fined.
32.VVby 32. If while the Wine is working in the Prefs or Vat, and while it continued to work in the Veffel, the moft fubtil Particles, which have moft Motion, and which by reafon of their Smallinefs were lefs ingaged with the other, be permitted to fly away, and evaporate into the Air through the Bung-hole, which is left open for that Purpofe, there muft neceffarily remain fewer of thofe Particles which tickle the Tongue, and more of thore which prick it. And this is the Reafon why we ought then to find the Tafte fharper, that is, fuch as we experience in Wine not quite fit to drink.
33 How it 33. After this, we may confider the Wine in two Conlofes this
Sharpnefs Sharpnefs. ditions: Firtt, let us fuppofe it ftopped up in the Veffel fo clofe, that it has not the leaft Communication with the external Air; in which Cafe fome of its Particles will be broken and blunted, and a great many of thofe which remain whole, will lofe theri Stiffners, and become plyable, by rubbing againft one another, and bending in that ftrait Place in which they are inclofed; and by this Means they will be lefs capable of thaking the Nerves of the Tongue: Wherefore the Wine will no longer tafte Sharp, but attain that Sweetnefs which we experience in it when it is fit to drink.
34. How it may become very fwect.
34. And without doubt the Sweetners would increafe continually, if the Wood of the Veffel did not change the Liquor a little, and permit the more fubtil Parts of it to evaporate through its Pores. For a Proof of which, we may remember, that Wine kept many Years in earthen Bottles, well ftopned, and put into Șand in the Bottom of

Chap.24. of Natural Philosophy:

the Cellar, will in length of Time become as fweet as Honey.
35. Suppofe now, that the Veffel be not ftopped; the long Particles which flip by one another, may be fo worn as to be a little diminifhed, but there is no Neceffity that they thould become limber and pliable: For thofe of them that are moft limber, are at liberty to evaporate through the Holc of the Veffel, and thofe which remain have the more room to move in without being forced to bend themfelves. So that all the Alteration that will happen to the long Particles which remain, is, that they will become more fharp, and the Wine will be converted into a Liquor which will prick the Tongue more fharply, that is, it will be turned into Vinegar.
36. If the Particles ftill continue to be thus moved for a confiderable time, they will at laft be fo worn, and become fo very flender, as to be extremely pliable, infomuch, that they will have no Power at all to move the Nerves of the Tongue; and then the Liquor compofed of them can bave no Tafte, and be very little different from Water; as we find by Experience.
37. For a final Confirmation of what I have faid concerning Taftes, I will relate an Experiment which I made my felf: I took a Pewter Pot, and having made a
37. A res maykable Exserimerisd. Hole in the Bottom of it, I ftopped it with a Piece of Cloth, and then filled it about half full of very, fine Sand, fo well wathed, as not in the leaft to tincture the Water which drain'd through, and afterwards well dried: After this, I put in a Quart of full-bodied Red-Wine, which diftilling through the Hole below, there came our about a Pint of clear Liquor like Water, which had no Tafte : Then perceiving that the Drops began to be tinged. with Red, I took away the Veffel which I had fet under, and put another in its Room, into which there ran pretty near the other Pint; and this laft was much lef's red, and had a much fainter Tafte than the Winie it felf before it pafied through the Sand. . Laftly, mixing this Liquor with the other, which was very clear, the Refule was a Liquor of a very faint Colour, and farce any Tafte.
38. I think no Body that knows what Sand is, can find 38. The Conout any other Reafon for the Alteration of the Tafte of ciaton fof his the Wine by paffing through it but this, that the Particles of the Wine being forced to go through very narrow winding Paffages, are bent a great many times all
N . Ways,

Ways, and I have the Figure and Condition of them changed: From whence we may conclude, that ${ }^{2}$ the Formn of all Bodies that bave any Tafte confflts in the Dijpofition and Figur of their Particles.

1. Have the Figure, \& c.) The Figure of them is not altered, but only the Parts which have no Colour or Tafte, are feparated from the red Parts which have a 'lafte.
2. The Form of all Bodies, \& Ec.) That Tafte confifts wholly in the Figure and Compofition of the Parts is clearly demonitrated by the famous Mr. Boyle, from the furprizing Alteration of Taftes, by variounly compounding of Bodies. I think it worth while bricfly to propofe the Experiments made by that excellent Perfon, becaule they ought to be kept in Memory.

Firft, From two Bodies, one of which is very acid and corrofive, the other alkalious aud fiery, may arife a Body without almoft any Tafte. This is done by a certain Compofition of Spirit of . Nitre and Nitre fixed per deliquium.

Secondly, A Body that has fcarce any Tafle Alay be Separated into two Zodies of a very Sharp Tafte, yet wery different from each other. This is done by diftilling the moft refined Salt of Nitre by Inflammation, or with a Mixrure of Clay which has it felf no Tafte.

Thirdly, From two Bodics, one of which is rery bitter, and the other very falt, may arife a Body which has no Tafie. 'This is done by fprinkling Cryfals of Silver difolved in Aqua-fortis with Brine or Salt Water, and then melting and preparing them on the Fire till they come so a Lutua cornca as the Chymitts call it.

Fourthly, From two Bodies mixed together, one of which is very fweet, and the other very falt, may arife alfo a Body: which has no Taffe. This is done by pouring a certain Quantity of Spirit of Sal Ammoni-
ac or Salt of Urinc upon red Lead diffolved in Vınegar, or Sugar of Lead difolved in a proper Menfiruzurn.

Fifthly, From two Bodies, one of which is acid, and the other has no Tafie, may arife a Body very bitter. This is done by ftraining Aqua-fortis faturated with diffolved Silver: For it will afford very bitter Cryfals.

Sixthly, From two Bodies mixed tgrether, one of which is infipid, and the other very corrofive, may arife a Body fweever than Sugar. This is done by pouring the beft Aqua-fortis upon red Lead, and then putting it over a moderate Fire till it is faturated.

Seventhly, From the freeteft Bodics of all, without mixing any other Bodics with them, may be extracted very corrofive Liquors, fuch as will diffolve cortain Bodies. Thus a Spirit that will diffolve Copper may be extracted from Sugar or Honey.

Eighthly, A Body as bitter as can be, may be feparated into two Bodies, one of wobich is very acid, and the other woithort any Taffe. Thus a very acid Spirit may be extracted from Cryfals of Siluer diftilled over a very hot Fire,and a Body woithout any Tafte will remain at the Bottom.

Laitly, The fmeme Body diffolvea in different Liquors, as Aqua forcis, Aqua regia, Spirit of Salt, diftilled Vinegar, Spirit of Urine, \&xc. willuave a differcnt Tafie in each of them: So alfo, the fame Liqzor as Aqua-fortis, mixed with differcrit Bodies, will bave different Taftes, thus with Silver it will be bitter, with Lead it will be fowcet, with Copper it will be intollerable. See Buyle of the Prodinction of Tafics.

Chap. 25. of Natural Philosophy:

CHAP. XXV.

Of SMELLS.

BY the Word Smell, we may firft underftand that par- r. What is ticular Sort of Senfation which is raifed in us by the mennt ty the Impreffion of certain Eodies upon I the Nerves of the internal Parts of the Nofe: And we may alfo undertand by ir, th.xt in the Body which fmells, in which the Power of exciting the Senfation of Smell in us, confifts.
2. Every Body knows by their own Experience what Smell is in the former Senfe of the Word, but it is impoffible to defcribe and make fuch Perception known to smell is nos others. All that we can fay, is, that the fame Object does Porfons. not raife the fame Senfation in all Perfons, a great many finding certain Perfumes agreeable to them, which others cannot bear.
3. This being fo, we fhall only endeavour to find out $\frac{\text { S That ari- }}{\text { t. }}$ what Smell is with refpect to the Body fmelling. Ariftotle detfined has not has not defined it at all in that Chapter where he treats dsmell is. exprefsly of Smells, and 2 where he makes this Excufe, that Men have not their Smell fo perfect as other Creatures.
4. Some of his Followers think they underftand what he means 3 from that Place where he fays, that the Inftant we perceive any Thing, we become like the Object which acts upon us to caufe that Senfation: And upon this Foundation it is, that they contend that Smell in the Object is fomething very like that Senfation which it raifes in us. To which they add, that Smell arifes from the Mixture of hot and cold, dry and moif, but fo that the hot and the dry prevail moft.
5. But befides, that this Opinion afcribes to inanimate $5 . A$ CariftrBodies, a manner of Exiftence which agrees to thofe only that are animated, which cannot be; it would follow, that the fame Smells muft be equally agreeable to all Perfons, contrary to what was obferved before. To which we may add, that it is wholly inconceivable, (fup-
I. The Nerves of the internal Parts)
For the Organ of Smelling, and the
Defcription of it. See Regis Phys.
B.8. Part II. Chap. v.
2. V Vhere he makes this Excufe)
It is not so evident what smell is,
as what Darknefs or Licht or
Colvar are. The Reafon is, beratefe
we have not this Senfation very per-
fect, but noorfe than many other Ani-
mals : For Man's Smel! is very kaid.

- Arif. de Anima. lib. 2. cap. 9.

3. From that Place) See the Nores
on Chap. xxiii. Art. 7 .
pofing the Idea's which the Arifotetians give us of the four principal Qualities that come under the Senfe of Touching to be true) that the Mixture of them flould produce any Thing elfe but Warmnefs, which will be more or lefs dry or moit, according as it has more or lefs of thofe Qualities mixed with it, which has no Similitude at all to that Idea which they give us of Smell. Laitly, If this Mixture were Smell, as we perceive it by Touch, it ought to raife a Senfation like to it felf in all Places where the Organ of Touch is ; and then we ought to fmell with our Hands as well as with our Nofes; which is contrary to Experience.
4. What the Nature of Smells conSifts in.
5. If to this it be anfwered; that That which caufes the Senfation of Warmnefs, when it acts upon the Hand, may alfo excite the Senfation of Smell, when it acts upon the Nofe, Nature having fo ordered it: I agree with them. But becaufe I know nothing elfe in Bodies but Magnitude, Figure and Motion, I cannot think there is need of fuppofing any Thing elfe to make them capable of impreffing Smell upon the Organ of Smelling: Wherefore I am of Opinion, that the fame Particles which raife the Senfation of Tafte, when applied to the Tongue, may alfo raife the Senfation of Smell, when being fo very fmall to fly about like Vapours or Exhalations, they come to tickle thofe two extended Parts of the Brain which anfwer to the moft inward Recefs of the Nofe.
6. Why Smells are moreperceived woben it is hot, than when it is cold.
7. This may be proved from hence: Firf, That we experience, that the greater the Heat is, and confequently the more capable of making a greater Number of fuch Particles as caufe Smell, to fly off; the further do Bodies extend their Smell: And on the contrary, as the Cold keeps their Particles at reft, and hinders them from exhaling, fo it is the Caufe of their Smell's being lefs perceived.
8. Why certain Bodies ceafe to fmell.
9. How Bodies which feem to have nosmell: maz fend fortit fome Smell.
10. Further, we obferve, that a great many Bodies fmell no longer than whilft they are moift, that is, fo long as fome of their Particles are in Motion; and that they ceafe to fmell when they are quite dry, or have all their Particles at reft.
11. Laftly, One of the moft cvident Proofs that we have to fhow that Smells confift in the Evaporation of certain Particles, is this ; that moft hard Bodies, which do not of themfelves, as we fay, raife the Senfation of Smell, when they come to be burned, or only to be rubbed one againft another, appear to have a Smell; becaure by thefe Means fome of their Particles are made to evaporate.

Thus

Thus Sealing-Wax, when it is lighted, raifes a Smell, which was not perceived before. And thus Iron rubbed againft Iron, and one Flint againft another, raiie a Smell alfo which was not perceived before.
10. I do not however pretend to affirm, that all Sorts of Particles which are carried off from all Sorts of Bodies, ought indifferently to raife the Senfation of Smell;
 have never For in order thereto, there ought to be a certain Motion of the Organ of Smell, and a certain Force to fhake it; and there may be alfo Particles fo very fmall as not to be able to fhake it the leaft that is poffible: Thus, the Air which we breathe, and the Vapours which rife out of Water, have no Smell at all; and, on the contrary, there may be others fo large as that they may not come to the Organ at all, or if they do come to it, are rather capable of quite ruining it, than of flhaking it in fuch a manner as may raife the Senfation of Smell.
11. The Difference of Smells depends upon the fame Caufe as the Difference of Taftes does, that is, I upon the Difference the Difference there is in the .Bignefs and Figure of the Par- -f.fs.

$$
\mathrm{N}_{3}
$$

1. Upon the Difference) That Smell, in the fame manner as Taftes, confifts entirely in the Compofition and Figure of the Parts, is very evident from the following Experiments made by the famous Mr. Boyle.
Firft, From two Bodies mixt together, each of which is without any Smell, may be raifed a very firomy urininons Smell. This will be, if sunflacked Lime and Sal Ammoniac be beaten together.

Secondly, By a Mixture of commen Water, which has no Smell, a Body which has alfo zo Smell, may be made to fond forth prefently a firong Smello. Thus Camphire diffolved in Oil of Vitriol has no Smell, bur mixed with Water, it immediately fends forth'a frong Smeil.

Thirdly, Compound Bodies may send forth Smells which are not at all like the Smells of the Bodies Separate. Thus Dil of Turpentine mixed with double the Quantity of Oit of Vitriol, after it is difilled, will not fmell of Turpentina but of Brimftone; and that which remains in the Retort, if it be forced with a ftronger Fire, will refemble the Smell of diftilled Oll of Wax.

Fourthly, A great many Șmells may be raifed only by Motion and

Agitation. Thus a Multitude of Bodies, as Glafs, Stones, \&c. which, though heated, fend forth no Smell, yet if agitated and bruifed with a particular Motion, fend forth a very ftrong Smell; and there comes a Smell like that of a Rofe, out of Beech-woood while it is turning.

Fifthiy, A Body that has a froms Smell, mixed woith another Body that has no Smel', may lofe all its own Simell. Thus if Aqria fortis not too well dephlegmated be poured upon Salt of Tartar, till it ceafes fermenting; that Liquor, after evaporation, will afford Cryftals without any Smell, like Salt of Nitre; but if they be burnt, they fmell as bad as can be.
Sixthly, Out of twoo Bodies mixch together, one of which has the workt of Smells, and the other not a very good one, may arife a pleafant aromatick Smell. This is done by a cerrain Mixture of Aqua fortis or Spirit of Nitro with inflammable Spirit of Wine.
Seventhly, Spirit of Wine mixed with a Body that has fiarce any Smell, may produce a pleafant aromatick Smell. Thus an equal Quantity of inflammable Spirit of Vine and Oyl of Dantzick Vitriol, mixed
ticles which are cxisaled from the Body that fmells. As will be evident to any one who coniders that thofe Things which have the fame Tafte, have alfo the fame Smell: Thus all fharp Bodies have a fharp Smell, and all bitter Bodies have a Smell that has fomething of Bitternefs in it .
12. How the Same Body may frond forth different Smells one afzer another.
12. And this is fo true, that when we are once affured that the Particles of certain Bodies have changed their Figures, we always find by Experience, that they have changed their Smell alfo. Thus, the Matter gendred in the Abfces of a Land Beaver, expofed for fome Days togethir in the Sun, in a hor Country (which without doubt dafhes the Parts one againit another, and alters their Figure) fenfibly alters its Smell, and as ftrong as it was, it becomes firit tolerable, and at laft is turned into that valuable Perfume, which we call Musk.
13. Hoor the 13. From what we have faid concerning the Nature of Bulle of fracling Bodies diminihbes by little and litile. finelling Bodies, we may conclude, that both their Bulk and their Weight diminifh by little and little. Thus we find by Experience thofe Snells to be quickly over which are raifed by burning : But as to thofe which we perceive without heating the Bodies, fuch as thofe of Musk and Civet, 1 it is a long time before they are fenfibly diminifhed, becaufe the Motion of their Particles is very now, and but a few of them are exhaled at a time. And as but a few of them are exhaled at once, they could not move the Senfe, without meeting and mixing with a great many others, which were fornetime before evaporated, and flew about the finelling Body.
rogether, and digefted, and then difilled, will afford a penerrating Spirit of a very pleafant s mell.
\therefore Eighthly, A Body of the moff ticafant Sreell, withorit mixing any other Body mith it, may degenerate into the siorfi fink. Thus the Spirit menticned in the foregoing Expcrincent, if it be kept flopped up in a Bottle, will in a fhort time degenerate into the frong Smell of Carlick.
Lattly, Out of tro Bodies, one of wobich has nu smell, the other a bad Smell, may arife a pleijant Smell. like that of Massk. This is done by putting Pearls into Stiitit of .Vitriol. For while they are difiolvingo they
fend forth a pleafant Smell. See Bayle of the Production of Smells. I. It is a long time, \&c.) It hoever confiders the infinite Divifibility of Matter, and the inconceivable Smailnefs of the Parts of Light which always find an eafy and open Pallage through Glafs and Diamonds on all sidcs, and every Way, will, I believe, have no doubt, bur that it is wholly owing to the Smallnefs only of the Particles emitted, though they may be very much larger than the Particles of Light, that Bodles which have a Smell, are yer a very long time before they are fenfibly diminifid.

C H A P. XXVI.
 Of SOUND.

THE Word Sound was intended to fignify in the firft Place, that particular Senfation which is raifed in us, by the Impreffion made upon the Ears by what we call founding Bodies. And the fame Word is alfo ufed to fignify That in the founding Bodies, as in a Bell or in the Air which furrounds it, which caufes in us the Senfation of Sound.
2. After what has been obferved when we fpoke of 2. In what Taftes and Smells, it is needlefs to fay, that Sound, taken in the former Senfe of the Word, cannot be defcribed, nor known any other Way but by Experience. Where- Word. fore we thall treat of it here only as That in the founding Bodies or in the Air, which we call Sound.
3. Ariftotle has I a Chapter particularly upon this Subject, wherein he afferts, that Sound is notbing elfe but the local Motion of certain Bodies, and of the Medium applied to the Ear; and that we may be fure that this is his Notion, he repeats it above twenty times.
4. I take particular Notice of that extraordinary Care which Ariftotle took, to make us underftand the Notion he had of the Nature of Sound For though he repeated it fo often, that it may feem troublefome to fome Readers; yet I find, he has not faid it often enough for fome others, who profeffing to follow his Opinions in other Things, do notwithftanding believe that Sound is a Cuality different from local Motion.
5. There are fome, who, to maintain this Opinion, and confute that of Arifotle, fay, that if Sound be nothing elfe but local Motion, it would follow; that in moving our Hand, for Inftance, we ought to perceive fome Sound; and there are others who affert, that according to this Notion, it muft follow, that a Bell which is heard two Leagues every Way, muft move the Air fo far all round, which they think abfurd.
6. Huwever, thefe Objections are of no Weight; for as to the firit, it proves no more than this; that Sound

[^40]6. That they are miftakerz in differing from Arifiotle.
doas not confift in all Sorts of Motion, and efpecially not in fuch a Motion as is given to the Hand when it is moved; which indeed is very true. And as to thofe who think it abfurd, that a Bell fhould move the Air for two Leaguas round, they judge of Nature only by their own Prejudices, which are no Proofs.
7. That the fornding (Bon. dy does not carife all that Miotion wobich is requifite to frodicice Sowird.
7. I confers indeed, that fome Force is required to put a Mafs of Matter, which is extended two Leagues round in Motion; But the Effect produced by the Bell is not fo great as we may imagine: For when it moves the Air in this manner, I it only acts upon a Body, which was in Motion before as it is a liquid Body. So that it does not fo much act upon it to give it Motion, as to determine that Motion which ir had before, in fuch a Manner as is proper to produce in us the Senfation of Sound.
8. That it is kot at.all difficalt to przt fome Bodies in Mfotion, which frem hard to be sooved.
8. I fay further, that it is not fo difficult as is imagined, to caufe fuch Sort of Trembling in a Body which is every way furrounded with a Liquid: Experience fhows us this in a large Anvil, (which doubtlets is one of thofe Bodies which are not apt to be put in Motion;) for we fee it trembles upon the leaft Blow given it by the Hammer; and we may obferve, that if a few Grains of Millet be put upon ir, and it be ftruck on the Side with a moderate Key; according as the Sound is more or lefs, the Grains of Millet will jump higher or lower, and change their Place on the Anvil. Now it could not caufe this Motion in the Grains, if it was not moved it felf.

9. That

9. And to fhow that Sound conffits in a particular Sort of Motion, we need only confider, that it is always produced when we Atrike our Fingers over the Strings of a Lute, or when we ftrike againft any hard Body. Now to ftrike the String of a Lute, or to ftrike any hard Body, is nothing elfe but to move the String out of its Place, or to put the Body in Motion. And it is very abfurd to think, as the Arifotetians do, that the Conftitution of them is altered, and that we make them to acquire fome Heat or Cold, fome Drynels or Moifture which they had rot before.

[^41]founding Body, and therefore more eafily yielding to it than if they were at reft; juft fo many ought we always to think are moved the contrary way, and for that Reafon refift the Body in Motion more than they would do if they were at reft.
10. And this is confirmed from hence, that if the Ear 10. A Proof be tickled in the infide fo as to make any Impreffion up- of the Truth on what I the Phyficians call the auditory Nerves, we find a cerrain Tingling. Whence it is evident, that it is the fame with the Senfation of Sound as with that of Pain; and both the one and the other fhows, that by the Appointment of the Author of Nature we are made fo, that when certain Nerves are moved, after a particular Manner, we fhould have a particular Senfation.
11. I can't omit here an Experiment which is often made ufe of to divert Children, and which wonderfully confirms this Opinion. They put a long Thread through a pair of Tongs, and wind each End of the Thread about their Fore-fingers, and then ftop both Ears with thole Fingers; then moving their Bodies backward and forward, they tofs the Tongs in the Air, and hit them againft the Andirons, or any other hard Body. Now though thofe that ftand by, hear but a moderate Sound, yet the other hear a Sound as loud as that of a large Church-Bell. It is impolfible to folve this any other way, but by faying, that the Motion of the Tongs fhakes the String, which gives its Impreffion to the Fingers, and thefe move the Parts of the Ear, to which they are applied, and by this Means the Nerves of the Organ of the Ear arealfo moved.
12. Being affured that Sound confifts only in fome Sort of Motion, all that remains, is to determine what Sort of Motion that is: And here I cannot agree with Arifotle, who would have Sound to be the Motion of a Body that is hard, poliflied and concave; for it is certain, that there are a great many founding Bodies which thefe Qualities do not belong to, and alfo, that there are none of them in Gunpowder when it takes Fire in a Cannon, which yet makes fuch a prodigious Noife.
13. Some perhaps, out of Zeal to this Philofopher, may attempt to defend his Opinion; by faying, that if thofe Qualities required by him in a founding Body, are not to be found in the kindled Powder, nor in the Air which is Thaken; yet they are in the Cannon, upon which he would make the Whole of the Sound to depend. But without amufing one's felf to find out Reafons to confute this Opinion ; it fhall fuffice to alledge the Experiment of what the Chymifts call Aurum Fulminans. What they call fo, is only a Compofition of three Parts

[^42] Salt of Tartar, beaten feparately in a Mortar, and then mixed together. We muft take about as much of this Mixture as we do of Gun-powder to prime a Musket, 'and lay it upon an Iron-Plate, or a flat Tile, and put it upon.a Chafingdifh of Fire; then the Powder will grow hot gradually, and be at once i turned into a Flame, which dilating it felf every way, caufes a Sound almoft as loud as the Report of a Musket well charged. In this Experiment, the Iron Plate or the Tile, ferves only to hinder the Powder from taking Fire, 'till it is equally heated all over; and fince the Sound depends upon the Flame and the Air, which are neither hard, nor polifhed, nor concave, without doubt this Opinion of Ariftotle's cannot be fupported.
84. That sinent conffits in a par ticular fort of Motion.
45. That this Motion may te confidered ins the fournding Body, and ine the Medium.
16. What the Sosend of the String of a $\sum_{i n t} \sum_{i n t c}$ confifs
14. We choofe rather to fay, that Sound confifts in a particular Sort of Motion of Bodies, than to fay with A riftotle, that it confirts in the Motion of a particular Sort of Bodies. For a more diftinct Explication whereof, we may oblerve, that the Bodies which we call founding Bodies, are not applied immediately to our Ears, in order to excite the Senfation of Sound, but for the moft part act by the Interpofition of the Air which they put in Motion; wherefore we ought to find out what the Motions of each of thefe are, when they produce this Senfation in us.
15. Thiere are fome Inftances in which it is cafier to find out the Manner in which the founding Body is moved; and there are others in which it is eafier to find out the Motion of the Air. The former of thefe we will firft explain as far as we are able, viz. the Manner in which founding Bodies are moved.
16. And to begin with the Lute, or any fuch kind of Inftrument that is plaid upon with the Fingers, it is to be obferved, that the Strings being ftretched, are as ftreight as is poffible, and that in playing upon thom they are put out of their Pofition, and bent a little by the Fingers; but as foon as they are let go, they return again to the Place out of which they are moved, and the Velocity which they acquire in returning, makes them go a little beyond it; then they come back, and go a little beyond the Place of Reft again; and thus they go and come feveral times, or have feveral Vibrations, and in this trembling Motion confifts their Sound.

[^43]17. The Sound of the Strings of a Violin confilts in 17. What the the Agitation they are put into by the moving of the Hair of the Bow over them which is made rough and Soxnd of the Violin conjagged, almolt like a Saw, by being rubbed with Rofin. fifts in. Which is fo true, that if the Hair of the Bow be rubbed with Tallow or Oil, the Strings will have no Sound, becaufe they flip under it, and are not thaked by it.
18. The Sound which a Drinking-Glafs makes when the Finger preffing hard upon it moves round the upper Edge of it, confilts in the Vibrations like thofe of the Strings of a Violin, it being evident, that the Finger here fupplies the Place of a Bow.
19. The Sound of a Bell confifts in a Trembling, pretty much like that of the String of a Lute : For it is certain, that the Blow given it by the Clapper alters its Figure a little, fo that from being round, it becomes oval: And becaufe it is made of Metal very ftiff and fpringy, that Part which is moit diftant from the Center, returns towards it, and fomewhat nearer than it was at firft, fo that the Places which were at the Extremities of the longer Diameter, are at the Extremities of the fhorter one; and thus the Circumference of the Bell changes its Figure by Turns, all the time it is founding.
20. It will be very eafy for any one to believe what is 20 . 4 Proof now faid, if he oblerves, that in laying his Hand upon a offuct Tremlarge Bell juft when the Clapper ftrikes againft it, he will feel a manifett Numnefs.
21. If the Bell be very fmall, as the Trembling is eafily ftopt by putting our Hand to it, fo ought the Sound to ceare alfo. And indeed there are very fmall Bells, which if they be but very lightly ftruck, will found for along time; but if we lay our Hand upon them as foon as they are ftruck, their Sound will immediately ceafe.
22. But the Sound of a great Bell is not fo eafily ftopped by laying our Hand upon it, becaufe it has more Motion, and becaufe it can transfer fuch a fmall Part of its Motion to the Hand, and referve enough to make ir be foffeafily heard.
23. The Sound raifed by friking a Piece of Wood, or $23 . \mathrm{Vvhy}$ a in general, any hard founding Body, confifts in a Trem- Body fornds bling, like that of a Bell, which is owing to its Spring- firreck. ginels.
24. Wherefore Bodies which have not this Property of ${ }^{24 . v} \mathrm{~V}$ vy Springinefs have only a very low and imperfect Sound:

And Souza.

And this is the Reafon why Lead and Clay, when they are ftruck againft, have fcarce any Sound.
25. VVhat fort of Motiof the Air it is in which Sorand con. fifs.
25. After what has been faid, it will not be very difficult to determine what fort of Motion it is in the Air which produces in us the Senfation of Sound; for it is evident, that ${ }^{1}$ this Motion of the Air muft neceiffarily be fuch, as the Trembling of the Sounding Bodies is $\mathrm{Ca}-$ pable of producing in it; that is, the Air ought to tremble, and bubble, and alfo by rifing and falling, to divide it felf into an infinite number of very fmall Particles, which by trembling and ftriking againft one another, muft have a very quick Motion; fo that the Air mult be fomething like a.Liquor that fimpers and does not quite boil. This is confirmed by what we fee of a Motion very like this in a large Tub of Water, by moving a Stick backwards and forwards in it very quick; for this Motion of the Stick is very like that of the Strings of a Lute, only there are much larger and the other flower.
26. Avifble
26. We may be certain of this Motion or Trembling of the Air, if we confider that the founding Body oughr to imprefs the fame fort of Motion upon it, that it does upon other Liquors. Thus, if a Glafs be half full of Water, and we make it found in the Manner beforementioned, by moving our Finger along the upper Edge of it; it muft without doubt fhake the Air as it does the Water; $=$ now we fee the Water tremble and boil, and alfo by jumping out batter and break it felf in fuch a manner, that a great many finall Drops fly a good way out of the Glafs. Whence we muft conclude, that the Air has the fame Sort of Trembling or Boiling.

[^44]of the Air, do thefe, being agitated with the fame Sort of Tremblings, agitate thofe Parts that are next them; and thefe in like manner agitate thofe beyond them, \&oc. This being allowed, the manner how the Pulfes are propagated along, and all the ocher Phænomena of Counds, are very advantageoully explained. See Newot. Pbilofoph. Princip. Mathemat. Book II. Prop. 43, Gc.
2. Now wo fee the VVater tremble) You may fee a Cafe of this Experiment very well worth obferving in the Notes on the 45 th Art. of this Chapter.

Chap. 26. of Natural Philosophy:

27. After having fufficiently fhown the Motion of the Air, which is necellary to make us hear any Sound: It is eafy to conceive that the Air in paffing by fome hard and immoveable Bodies, may move it felf fomerimes in fuch a manner. Thus, when we whiftle, by blowing comes out fills the other half; and thefe two Parcels of Air fliding by one another with contrary Motions; a great many of their Parts muft neceffarily be made to turn round and to tremble, and the whole Air which is betwixt him that whiftles and him that hears mult alfo be made to turn round and to tremble.
28. We may oblerve here, that there are Bodies, which are opened by Fits to let the Air through, and which by this means caufe us to hear a particular Sound, which is alfo a very confiderable one. Of this Sort are the Rows of Pipes which compofe an Organ, or the fingle Pipe of a Bag-pipe. Thefe Bodies themfelves are not moved in order to produce Sound; but the Air being firt put into Motion, endeavours to pafs through them, but is forced to go out trembling, and fo impreffes on the reft of the Air the fame Sort of Tremblings as the Strings of a Violin do, and fo caufes us to hear a Harmony, the Motions of which are Trembling.
29. And in the fame manner is the Voice of Avimals formed: For there is a fmall Valve at the End of the Trachea, which performs the Office of the Valves of the 29. Foro the Voice of $\mathcal{A n i}$ mals is sforTubes which compofe an Organ; which Valve we can contract as we pleafe, and let the Air' out of the Lungs by Fits. And becaufe this Valve for the moft part continues open, therefore the Air in Refpiration comes out commonly without any trembling, and confequently without making any Noife.
30. It would be too tedious to explain particularly all the different Manners in which Sound is produced. But becaufe there is fomething fingular in the Sound of a Cannon when it is difcharged, becaufe the Flame feems to charged. give but one and not a repeated Shake to the Air, therefore it may be worth while to explain how fuch a prodigious Noife is made. It is to be obferved then, that the Gun-powder, when it takes Fire, 1 is fo extraordinarily dilated, as to take up above a Thoufand times the Space

[^45]that it did before; fo that it drives before it every Way all the Parts of the groffer Air which was in this Space, and thefe Parts can find no where to go, but by preffing upon other Parts, and driving them on likewife; and at the fame time they fqueeze out the fubtile Matter which mixing with the Powder, compofe that fenfible Mars which we call Flame. Hence it follows, that there is in the Air two contrary Motions ; the one of which gathers together and unites the moft fubtile Parts, and the other difperfes the groffer ones. And this would be done in a Moment, but that the groffer Air which is condenfed all round, has a Tendency to return into that Place out of which it was driven, and towards which, after the Violence of the Flame is over, its own Weight forces it, and that with fuch an Impetus, that it becomes more denfe than it ordinarily is ; whence it will be reffected again all round, or condenfed anew ; becaure being rarefyed again, it returns to the Place which it had quitted; and thus it quits and takes again the fame Place feveral times fucceffively; and this is the Reafon of that Thort Continuance of the Noife of a Cannon when it is difcharged.
31. That the Senfation of the Sourad continues longer fometimes than the
Somand it folf.
32. VWhy the Flafb of a Cannor is Seen before the Sound is beard.
33. VVhy the Sound grows weaker, the further we are diffant from the founding Body.

3r. However it is to be obferved, that the Ear may fometimes be fo ftrongly moved, that it may continue to tremble fome fhort time after the Air has done trembling ; and for this Reafon, the Senfation of Sound may fometimes continue after the Agitation without is ceafed.
32. Becaufe the trembling Motion of the Air in which Sound confifts, is communicated gradually, fo that it affects thofe Parts which are near the founding Body fooner than thofe that are further off, the Sound muit neceffarily take up fome time in going along: And fo we find by Experience, that if a Cannon be difcharged at two or three Miles diftance from us, we fee the Flath fome time before we hear the Noife.
33. And becaufe the Motion which is impreffed by the founding Body upon the Air clofe by it, is tranfferred from one Part of the Air to another fucceffively, and always paffes from a lefs Quantity to a greater, in proportion to its Diftance from the founding Body; therefore near the founding Body, there muft always be more Motion in a given Quantity of Air, than there is at a greater Diftance; fo that the Sound ought to grow weaker as it is further from the founding Body.

Chap．26．of Natural Philo sophy：

34．The Propagation of Sound may very well be x com－ pared with Circles made in the Water，by throwing a Stone into it．And as thofe which are made in a running Stream，extend themfelves further towards the lower than towards the upper Part of the River，bccaufe the 34．That Sornud going along with the V Vind，ought to be heard fooner than
mphen againg whole Water in which they are formed carries them in－it． tire that Way：So likewife may we conceive，that if the Wind carries the Air towards one certain Place，the trem－ bling Motion in which Sound confifts，will fooner go this Way than the contrary．Thus we find by Experience， that we hear the Sound of a Cannon，and in general all other Sounds， 2 fooner with the Wind than againft it．And it may happen，＇that the Air may be moved fo quick，that its Parts may flee from us as faft as the Sound goes，and fo we may not hear it at all．

35．Becaule Sound is propagated every Way，as it were from the Center to the Superficies of a Sphere，it may fo happen，that the Parts of the Air which would com－ municate their Motion to fuch as are at a greater Diftance， may meet fome hard Body which they cannot thake； and this may caufe them fome．Way to be reflected back again，and make them communicate their Mótion again to thofe Parts from which they received it，and thefe to others； fo that there will be a new Trembling：of the Air inftead of that which began firft，and hath already ceafed for fome Time：Confequently we may hear again the fame Sound which we heard at firlt；aud this redoubled Sound is what we call an Echo．

36．If the Sound meets with feveral Bodies at different Diftances，which are capable of reflecting it back again； if that which returns from the moft diftant Place ftrikes upon the Ear，after the Impreflion of the former is

36．How me Echo may リーー peat IF Vords fpoken fewernat times．

> 1．Compared with Circies made in the VVater）If the Water be put in Motion，by throwing in a Stone， or by moving our Finger or a Stick backward and forward in it，the Waves will immediately furround our Finger；and if during the Agi－ tation it be carried ftreight forward＇ towards any Part whriout bending， yet thefe．Wares，as if they were concentrick Circles，will be equally propagated every Way ；which Com－ parifon does very properly flow us， that the tremulous Motion of the Air ought to be propagated not on－ Iy the，fame way that every one of the Particles of the founding Body，
fuch as the Strings of a Violin，are agitated；but alfo to be propagared in a Circle all．Ways from the found－ ing Body as the common Center．

2．Sooner with the Vlind than a－ gainfit）The Gentlemen at Florence thought they had found by cercain Experiments，that sound is propa－ gated with the fame Celerity againft the Wind，as with it，though much more faint．Enper．Acad．del Ci－ meruto，p ．r 40 ．IBut the induftious Mr．Derham found it othervife in Experiments made at a much greater diftance．Sce the Philofophical Iranf aftions，Numb． 3 I3．
quite gone off, it mult in its Turn produce a new Senfation of Sound. Whence it is evident, that we may meet with Echo's which repeat the fame Word feveral times over.
37. VVhy be which Speaks, does not alwoays hear the Sound of the Echo,
38. VVhat the different Species of Sound confift in.
39. How Several Sounds may beheard together.
37. According to the Inclination with which the Air frikes upon the Bodies which reflect the Sound, ought the Reflection to be on the one Side or on the other, which is the Reafon why there are fome Echo's where he who fpeaks does not hear the Words that are repeated, when others who are at fome Diftance from him can hear them repeated diftinctly.
38. As to the Difference of Sounds that we meet with, which conftitutes the different Species of them, as Flats and Sharps; the mufical Inftruments fufficiently fhow us, that they confirt in the different Motion both of the founding Body, and of the Air which is agitated by it. For the more the Strings of a Lute are frained, theJaarper the Sound is; and on the contrary, the loofer the Strings are, the more flat is the Sound. Now it is certain, that the more a String is ftretched, the fwifter and more frequent is the Motion which it impreffes on the Air: whence it follows, that a Jbarp Sound confifts in the 2uicknefs and in :tbe fudden Reiteration of the Motion upors which the Sound deperds, and a flat Sound confirts in the Slownefs.
39. When two founding Bodies ftrike upon the Air at the fame time, they mult imprefs fuch a Motion upon it, as is compounded of the two Motions which would be caufed, if they acted upon it feparately; and confequently the Air ought to put the Organ of Hearing into fuch a Sort of trembling Motion, as may raife a Senfation compofed of each of the Senfations which the Bodies would raife feparately.
40. VVhat 40. And if the Motions of thefe two founding Bodies Concords confift in. do fo exactly agree, that the Tremblings which they caufe in the Air in a given Time are commenfurable, that is, at the fame time that the one ftrikes the Air, the other ftrikes it alfo, or at leaft, that they ftrike together èvery fecond or third Stroke ; then the Ear will be fo uniformly ftruck upon, and in fuch meafure, that it will perceive the Diftance, and be pleafed with the Cadence; and in the Strokes being thus commenfurable very probably confifts thofe Concords which Muficians call an Unifon and Octave, a Fifth and a Tbird.
41. On
41. On the contrary, if the Tremblings imprefied on the Air by the Sounding Bodies be incommenfurable, that is, if they do not agree in Time nor ftrike together; we muft perceive the Inequality of the Sound; and becaufe they do not move the Ear uniformly, they cannot produce any Harmony; and in the Strokes being thus incommenfurable, coiffits very probably the Iones which Muficians call $D:$ frords.
42. From what has been faid concerning the Motion impreffed on the Air by founding Bodies, fome Perfons perhaps may be apt to think that thofe, impreffed by the Strings of a Lute are not equal, but quicker atfirft, and ilower as the Motion ceafes; but it is not very difficult to thow forne Sonds are Difortso. that the contrary is true, if we oblerve, that the Motion of the String when it almoft ceafes to be agitated, may be made up by the Shortnefs of the Way that it has to go: So that it takes up neither more nor lefs Time in making its firft and longeftVibrations, than it does in making its laft and fhorteft.
43. There muft indeed be fome Pains requifite to prove the Truth of this by Experiments: For it is impolfible to do it by the Strings of a Lute, becaufe of the fmall Time that they take to make feveral hundred Vibrations in. But becaufe the Motion we are fpeaking of is very like that of a Weight hanging in the Air at the End of a String, we may imagine, that what we obferve of the Motion of the one, may be equally applied to the other: Now we find by Expericace, that if this Weight be drawn from the Perpendicular, and then let go, fo as it may fwing freeiy, all the Vibrations till it ceafes to move at all, will be made in the fame Time. For if we will be at the Trouble to count how many Pulfes of the Artery there are in the firft twenty Vibrations, fuppofe, we fhall find as many in the twenty following Ones, or in any other Twenty, whicts you will: Now from this fingle Experiment we may conclude that every Vibration of the String of an Infrument is made in the fame Time, and that the Lait take up no more than the Firft. And becaufe this Experiment is very eafy to make, and is a curious one, and may ferve as a Principle from whence many important Conclufions in N/wfick may be drawn; it is worth any one's while to be at the Pains to obferve the Motions of thofe Pendulums, and to put feveral of their in Motion together. For we flatl. then fee, that thofe which are of an equal Length, and alike in every other refpect, wilh perform their Vibuati. ons in the fame Time; and that thofe which are of difen ferent Lengths, require different Times, viz, the Shorter,
43. Oft t_{t} Motion of Pendutiamss
the lefs Time, fo that their Vibrations will be to each other I in a reciprocal Proportion of the Square Root of their Lengths; and thus what we have faid of the commenfurability of Sounds, and the Concords of Mufick, is confirmed.
4. V Vrasace 4. From hence we may alfo clearly apprehend how ditfferent
Sirts of Voiccs different Sorts of Voices are made, and why the fame Sorts of Voiccs Mouth may caufe by turns a flarp and a flat Sound. The mbyythevoices Reafon of which is, that the Epiglottis which is placed at of chillren
are esererally the End of the Pipe through which we breathe, and which are generally foarper than thofeof gromn Vpas to give a palage cor ha dorn at pleafure, that Peqeqle. is, fo as to be fometimes to be altogether and from its Roots open, or fhut, and fometimes in Part only. Now that which can be lifted up in fuch a manner as this, by Turns, and as it were with a trembling Motion, to let the Air out with the fame fort of Motion, refembles a Pendulumz; whence it follows, that the Tremblings of the Voice muft be fo much the quicker, the lefs the Epiglottis which regulates the Motion, is lifted up, and on the contrary, they are the floweft that can be, when the Epiglottis is at liberty to lift it felf quite up. Upon this Flexilenefs of the Epiglottis depends all the Variety of Tones of the Voice; for the Air which comes our of the Lungs being diffcrently agitated according to the different Pofition of the Epiglottis, impreffes the Motion it received as it came out, upon the external Air, which ftriking the Ear differently is the Caufe of all that Diverfity which we obferve in Sounds. And becaufe Children have generillyall the Parts of their Bodies proportioned

[^46]Polygons, and that they are in the fame Pofition with refpect to the Earth; then it is evident, that the Square Roots of the Arches, nr of the Spaces run through, and for the fame Reafon, their Radius's or the Length of the Surings, will reprefent the Trimes of the Defcent of Pendulums, and becaufe the impetus or Velocity in afcending, is evidently deftroyed equally in the fame manner, and in the fame time as it was acquired in defending ; therefore the whole Vibations of thefe Bodies muft necefiarily hive the fame Proportion to each other, as the Square Roots of the Lengths of the Strings. See the Notes ons Part II. Chap. xxviii. Art. 16.
to their Bignefs, and confequently their Epiglottis, lels than in grown Perfons, therefore the Voice is generally fharper.
45. And altogether as ealy is it to account for an Expe- 45. The Reariment which at firft Sight has furprized a great many Perfons; which is, that if two Strings of the fame Lute, Sympathy of or of different Lutes that are near one another, be Uni- are Concords, fons, we cannot move the one, I but the other will found alro, at leaft it will tremble; whereas it will not tremble at all, if we move any other String near it, which is not a Contord. Now the Reafon of this Experiment is, that the Strings which are Concords, are capable of the fame Vibrations ; fo that the Air which is pur in Motion by the one, can very conveniently communicate its Vibrations to the other; which cannot be in two Strings that are not Unifors'; for there is no Agreement in them, becaufe the Air which is put in Motion by the one, does not find the other at all difpofed to receive its Motion, and every Stroke except the Firft, is out of Time, fo that by not agreeing they deftroy each other's Motion.
46. This Experiment has raifed the Admiration of many Perfons for a long time, and fome have undertaken to account for it, by faying, that there is a Sympathy be- other Bodiess tween the two Strings; but, befide that this is only a Way of fpeaking, we may obferve, that the Difpofition which a Body has to move, when the Air is Thaken by another Body, 2 is to be found in other Things as well as in the Strings of a Lute, ; or other Mufical Inftrument: This I have experienced in the late Wars, when I have obferved the Glafs-Windows to tremble very fenfibly upon the beating of a certain Drum, and at the fame time would not tremble at all upon the beating of others which were much louder.

[^47]46. The fame Sympathy is

much

fick Man that had his Left Hand cut off; upon the difcharging of cut off; upon the difcharging of
Cannons, he thought himfelf almoft fhattered and torn, to pieces; and of anuther, that upon frraping a piece of Iron with a Knite, he piece of Iron with a Knite, he
could not hold his Water; and of a Third, that upon tearing thick Paper his Gums would bleed. Ses his Effert of languid Motion:
47. What is the Caufe of that fhiverixt which we feel upon bearing a Trumpet.
48. How we do render our felves attentive, fo as to hear
Sounds difinutly.
47. To thefe Sort of Motions, I conceive we may afcribe the Caufe of a certain Sbivering, which we fometimes feel all over our Body, and which reaches even to our very Heart, when we hear the Sound of a Trumpet, or fuch kind of Inftrument; For it may be that the Blood is fo difpofed, as to yield eafily to the trembling of the Air.
43. And becaufe the Membrane of the Ear, which is moved by the Agitation of the external Air, and the different Thaking of which caufes different Motions in the Capillaments of the Nerves of the Ear, is fomething like the Parchment of a Drum (and is therefore by fome called the Drum of the Ear) I am of Opinion, that it is capable of being more or lefs fhaked, according as it is more or lefs ftretched. Wherefore I can eafily perfuade my felf, that we fometimes ftretch or loofen it, in order to receive the Impreffion of the Sound more fenfibly, and to make it the better agree with the Motion of the external Air: fo that Attention confifts in nothing elfe but in a due ftretching or loofening this Membrane; and keeping it in that Pofition in which it will beft receive the Impreffion and Motion which the Sound gives to the external Air.

C H A P. XXVII.

Of Light and Colours, and of Tranfparency, and Opakene/s.

1. The firfy Serts of the Words Light and Colourts.

IF in any Thing Exactnefs be required in the Meaning of Words, in order not to be furprized by any Equivocation, it is principally in this of Light and Colours, which are commonly ufed to fignify very different Things, and generally confounded by moft Men. Firft then it is to be obferved; that as we have given the Name Pain to the Senfation, which is raifed in us by a Needle when it pricks us; fo likewife have we given the Name Light to that Senfation which we have, upon looking on the Sun or a Flame, and that of Colour to the Senfation raifed in us by diverfe Objects which we call coloured; thus in particular, we give the Names of a White Colour and a Green Colour to the Senfations which Snow or Grafs ufufually produce in us:
2. Secondly, By thefe Words Light and Colour, we alfo underftand, that on the Part of the external Ob- Senfe of the jects which is the Caufe of exciting in us the forementi- and Colour. oned Senfations: Thus by the Ligbt of the Flame, we mean fomething, I know not what, which occafions the Senfation of Light to be excited in us; and by the Whitenefs of the Snow, we underfand fome other Thing, I know not what, that is the Occafion of our having the Senfation of Wbitene $/ s$.
3. And becaufe the Objects which we call luminous; fuch as the Sun or a Flame, do not affect our Eyes immediately, but act by the Interpofition of fome interveen-
3. A third Senfe of the Word Light. ing Bodies, fuch as Air or Water or Glafs; yet that which is impreffed on thefe Mediums, whatever it be, is called Light alfo, but Secondary or Derivative, to diftinguifh it from that which is in the luminous Objects which is called original or innate.
4. We call thofe Bodies Tranfparent, through which 4.The Meanluminous Bodies act upon our Eyes to raile the Senfa- ing of the tion of Light, and through which we can alfo fee Co- Warent Trand lours. And we call thole Bodies Opake which interrupt Opake. the Action of luminous or coloured Bodies, or through which we cannot fee either Light or Colours.
5. I do not pretend to declare what Light and Colours 5.That the are in the firft Senfe of the Words, but leave it to eve- $\begin{aligned} & \text { Senfation of } \\ & \text { Light }\end{aligned}$ ry one to make them clear to himfelf by his own Expe- tour cannot be rience; for I think it as impoffible to give another Per- decribed. fon a true Notion of that particular Senfation that we have of Colours, as it is to give it to one that is born. blind.
6. However, I may venture to affirm, that as it often happens that the fame Food may at the fame time raife different Taftes in two different-Perfons, fo it may alfo happen, that two Perfons looking in the fame manner upon the fame Object, may have very different Senfations; and I am the more perfwaded of this, becaufe I have experienced it in a particular manner my felf. For when I had once quite tired and weakned my right Eye by looking intently for above twelve Hours together through a perfpective Glafs on a Battle betwixt two Armies, within a League of me; I found my Sight fo affected afterwards, that when I looked upon Yellow Objects with my right Eye, they did not appear to me as they ufed to do, nor as they now do to my left Eye : And, which is very remarkable, I do not find the fame Difference in all Colours but only in fome; as for in-
ftance in Green, which appears to me to come near to a Blue, when I look on it with my right Eye. This Experience makes me believe, that there may be fome Men born with that Difpolition, which I at prefent have in one of my Eyes, and which may continue all their Lives, and perhaps there are others whofe Eyes are of the fame Difpofition with my other Eye. However, it is impolfible, either for themfelves or any other Perfons to perceive it, becaule every Body accuftom themfelves to call the Senfation which a certain Object produces in him, by that Name which it ufually goes by; which yet being common to the different Senfations that every one may poffibly have, is not the lefs ambiguous.
7. Ariftotle's Qpinion aboust Light. what Light is, and what the Colour of Objects is, which is the principal Defign of this Difcourfe; I obferve, that Arijotle has treaied of the fame Subject, in the 7 th Chapter of his Second Book Concerning the Soul; where, after having faid, that Colours depend upon Light in order to their being feen, he concludes, that thefe two Qualities ought to be explained together. And in order to determine what Light is, he fuppofes that fome Bodies are tranfparenzt, fuch as Air, Water, Ice, Glafs, and fuch like. And becaufe we cannot fee through any of thefe Bodies in the Night, he fays, that then they are in Power only tranfparent, and that in the Day-time they become actually tranfparent: And becaufe it is Light alone that can bring this Power irizto ACt, he concludes, that light is the AEC of a transparent Body as transparent.
8. His opi- 8. As to Colour, he obferves, that fince the Obnion about. Cologitro. ject in which it is, does not apply it felf immediately to our Eyes, in order to raife any Senfation in us, it muft firft move the Medium which is betwixt that and us; and becaufe it cannot be perceived through Opake Bodies, nor can it be feen through thofe that are only tranfparent in Power, he concludes, that Colour is that which moves Bodies which are actually tranfparent.
9. That be 9. Though Arifotle in the forecited Chapter, has not has not f reff- fearched this Matter to the Bottom, yet he affirms, that
ciently exciently explained what Zight and Colosistrare: he has fufficiently explained what Light, and Colour, and Tranfparency are, and imploys almoft all the remaining Part of his Difcourle, in refuting the Opinions of fome Philofophers that were before him. However he adds, that Light is not Fire, nor a Bociy proceeding from a Luminous Body, and paffing through a tranfparent one; put only the Prefence of Fire, or any other luminous Body

Chap. 27. of Natural Philosophy:

with the tranparent Body. But upon confidering this Opinion, I fee no reafon to be fully fatisfied with it, as if it could not be carried any further than Arifotle has done, or at leaf, that it cannot be more diftinctly explained. For it is certain, we are ftill at a lofs to find out more particularly what the Nature of tranfparent Bodies, and alfo what the Nature of luminous Bodies is, and further how the Prefence of the Latter operates on the otber, to bring its Power into ACt, and laft of all, what that is which moves a Body that is actually tranf parent.
10. This fome of the Commentators upon Ariftotle have acknowledged; and though they might have had fome Light from what he has faid in his Problems, and particularly from 1 the 6ift of the Eleventh Section, yet they have either overlook'd what he has faid in this Place, or at leaft not rightly underftanding him, they have advanced fomething which it does not appear that Arifotle ever thought of, viz. that Light and Colours in the Objects which we call luminous or coloured, are Qualities exactly like thofe Senfations which they occafron in us, and (as fome of them contend) they arife alfo from a Mixture of Hot and Cold, of Dry and Moift. And for Proof of this (befides their thinking, that they have Arfotle on their Side) they affirm, that it would be impoffible for luminous or coloured Bodies to caufe thofe Senfations in us which we feel, if there were not in them fomething very like what they caufe us to feel, for, fay they, nothing can give what it has not.

Ir. But, befides that Arifotle has faid nothing pofi- 11. That they tively concerning what they have advanced, Authority ftands for nothing, when we are inquiring after Reafons have not fro-
ved what shey ved what they only. And as to what they alledge, it will appear to be only a mere Sophifm, if we refiect ever fo little upon the Pain which we feel when we are pricked by a Needle; for this thows us, that it is not at all impolfible for, an Object to be able to excite in us a Senfation which it felf has nothing of. And this is ftill further confirmed from hence, that two Men may fee the fame Object differently, as was before obferved, I my felf feeing Yellow differently with my two Eyes.

[^48]12. That it is not true.

I2. But that which moft evidently fhows, that i: is not at all neceffary there fho uld be any Refemblance betwech the Quality of the Object, and the Senfation it excites, is this; that we cerrainly have very ftrong Senfations of Red, and Yellow, and Blue, and all other Sorts of Colours, upon looking through a Triangular Glafs Prijm, in which no one cver furpected that there was any Thing like the Senfation which it raifes in us.
13.The Ab fisrdity of the Opinion of forne of the Ariftotclians.
13. That which others of them fay concerning the O riginal of Colouis is full more abfurd. For what Connexion is there betwixt the Idea's we have of Hot and Coid, Dry and Moift, and thofe which they fuppofe us to have of Colours: If what they fay were true, it would from hence follow, that the fame Object ought to have as much Variety of Appearances to the Eyes, as it raifes different Senfations to the Touch; which does not agree with Experience: On the contrary, there are fome Bodies, fuch as polifhed Steel, and Lobfters, which when heated by the Fire, acquire a certain Colour; but when made cold by dipping them in Water, they do not alter their Colour:

I4. A Comparifon of the Becication of Xinht woith ơh.it of P aiv.
14. Leaving therefore the Opinion of Arifotle and his Followers, concerning Light and Colours, let us now confider what Part we are to take upon this Subject. And Firit, Since we have no Reafon to fay, that the light of luminous Bodies is any Thing elfe but the Power which they bave to prodice ins us that very clear and bright Senfation which we bave wiben they are before us; Why may we not compare this Power with that which a Needle has to caufe Pain in us? Since then the Senfation which a Needle ruifes in us fuppoles only that we are fenfitive Creatures, and nothing more is required in the Needle but its Figure and Hardnefs, which are alone fufficient to caufe a Divifion in the Patt to which it is applied: So likewife it is reafonable to think, that the Senfation of Light depends upon this, that we are by Nature made capable of this Sort of Senfation; and that there is in the Pores of tranfparent Bodies, a Matter fine enough to penetrate even Glafs, and yet at the fame time ftrong enough to fhake the fmall Capillaments of the Nerves which are at the Bottom of the Eye, Further, as there muft be fome Agent to pufh the Needle into us, fo likewife muft we think, that this Matter is pufhed by the luminous Bodies, before it can make any Imprefion on the Organ of Light.

Chap.26. of Natural Philosophy:

15. Thus ${ }^{1}$ Original Ligbt confifts in a certain Motion of the Parts of luminous Bodies whereby they are capable of pufhing every Way the fubtil Matter which fills the of $\mathcal{L}_{\mathrm{T}, \mathrm{i} \text { bt }}$ and Pores of tranfparent Bodies; and the Effence of fecondary and Opakeor derived Light confints in the Difpofition or Tendency of nefs is. this Matter to recede from the Center of the luminous Body in a fireight Line. Whence it is eafy to infer, that the Form
16. Orişinal Light----Secomdary or derived Likht) Original Light confifts intirely in a purticular Motion of the Particles of the luminous Body ; not whereby they pufh forward that fietitious Matter which Cartes imagined the Pores of tratfuarent Bodies to be filled with ; but whereby they fhake off fome very fmall Particles from the luminous Body, which are fent forth all Ways with a very great Force: And Secondary or Derivative Light confifts, not in the Difpofition, but in the real Motion of thofe Particles receding every way from the luminous Body in ftrcight Lines with incredible Swiftnefs. For if Light confited only in Preffure, it ought to be propagated to all Diftances in a Moment of Time; which it certainly is not (See the Notes on Art. 30. belom.) And it would not be propagated in Atreight Eines, but it would perpetually run in upon the Shadow. For Prefion or Motion cannot be propagated in a Fluid in right Lines beyond an Obffacle, which fops part of the Motion, but will bend and fpread cuery Way into the quiefcernt Medium, which lies beyond the Obfacle. Gravity tends downwards, but the Preffure of Water arifing from Gravity, tends every way with eqzal Focre, and is propagated as readily, and mith as mutch Force fideways as domnwards, and through crooked Paffages as througgh fireight oncs. The Waves on the Surface of ftagnating Water, palfing by the fides of a broad Obfacle which foops part of them, bend afterwards, and dilate them $e l$ lecs gradrally into the quict Water bebind the Obfactle. The Waves, Palfes or Vibrations of the Air, wherein Sounds confff, bend manifefily, though not fo much as the Wares of VVater---And Sounds are propagated as readily through crooked Pipes as through fireight cnes. Buat Light is never known to follow crookid Paffages, nor to bend into the

Shadow. Newt. Opricks pag. 337. Rays of Light therefore mult be fmall Corpufcles fent forth from liminous Bodies with a very great celerity. For fuch fort of Corpufcles (contraty to the Pretion of Motion propagated in a Fluid) ought to be tranfmitted through uniform Mediums or void Spaces in ftreight Lines, without bending into the Shadow; as we fee the Rays of Light are tranfmitted.

Concerning that Force by which thefe Corpufles are fent forth with fuch incredible celerity, that they are carried above 7000000 of Miles in a Minute (See the Notes on Art. 30. belom.) the admirable Perfon before-cited fpeaks thus. Tho \sqrt{e} Bodies robich are of the fame kind and have the fame Vertue, the fmaller they are, the fironger is their attractive Force in Proportion to their Bignefs. (See the Notes on Chap. xi. Art. r 5.) VVe find this Force fironger in profortion to their Vireight in fmall Magnets thans in larger ones; for the Particles of fmall iMagncts, becaute they are nearcr one moother, can the more cafily znite their Forces together. V Vherefore it is reafonable to expect, that the Rays of Light, fince they are the fmalleft of all Bodies (that we know of) Shorld be found to bave the frongeft ateractive Force of all. How frong this Force is, may be zathered from the following Rasle. The Attraction of a Ray of Light, in proportion to the Qruantity of Matter it contains, is to the Gravity which any projected Body has, in proportion to the 2 tuantity of Matter contained in it, in a Ratio componnded of the Velocity of the Ray of Light, to the Veloclty of the projected Body, and of the Bending or Curvature of the Line which the Ray deforibes in the Place of Refraction, to the Bending or Cizrvature of the Line which the project. ed Body defcribes; viz. if the Inclination of the Ray to the refracting Su- of its Pores, or rather, that they crofs eacb other a!l ways without any Interruption, and on the other hand, a Body is opake, becaufe none of its Pores are ftreight, or if they be, they are not penetrable quite through, and all ways.
perficies, be the fame as that of the projected Body to the Horizon. And fromz this Proportion I collect, that the Attraction of the Rays of Light is more than 1000000000000000 times greater than the Gravity of Bodies on the Superficies of the Earth, in proportion to the quantity of Matter contained in them; viz. if Liybt takes up about Seven or cight Minutes in coming from the Sun to the Earth.... Now, as in Algebra, vobere affirmative 2 namtities vanifh and ceafc, there Negative ones begin; fo in Mechanicks, where Attraction ceafes, there a repzilfive Vertue ought to fucceed..-. Therefore a Ray, as foon as it is Shaken off from a Shining Bod dy, by the vibrating Motion of the Parts of the Body, and gets beyond the Reach of Attraction, is driven away mit's exicceding great Velocity. Opticks pag. 370.

1. In the fercightnefs of its Pores) Thus Ariftotle clearly exprefles himfelf. The Sight will not penctrate folid Bodies, becaufe it can go only through a fireight Paffure (this the Rays of Stin are an Evidence of, and alfo our not feeing any Objects but wohat are right before zis) when therefore the direct Progrefs of the Sight is biadred by the Pores not being all fireight, it cannot pafs through. But the Sight will pafs througs fiutid Bodics, becazse the Pores are Small and fireight ; So that it is not hindred from going throurgh them. Wherefore Glafs is trandparent thorigh it be very thick; but a piece of Wrod is not transparent, though it be very thin, becaufe the Pores of the former are regzlar, and thofe of the latter irregular. Nor does their being large fiwnify any thing if they be not freight; neither are rarer Bodies the more tranfpayent, zonlefs their Pores are So difpofed as to admit of a Pafjage. Prob. 6 r . Sect. 11. And indeed that Atreight Pores, or rather fuch as crofs one another every way from all sides, are neceflary in a Body's being tranfparent cannot be doubted: But how it can be, that not only Glafs and Diamonds, but alfo Water, whofe Parts are fo ealy to be
moved Mould have its Pores ftreight, and eafy to pafs through from all Sides, and all Ways, and yet at the fame time, the thinneft Paper or even Leaf-Gold, for want of fuch Pores, thould exclude the Rays of Light; is not eafy to be conceived. Wherefore we mult feck for another Caufe of Opakenefs.

We muft know then, that all Bodies whatfoever, have in them much fewer Parts, and much more Pores or void Spaces, than is requifite for the greateft Number of Kays of Light to find a free and open Paffage in ftreight Lines all ways without running upon the Parts. For fince Water is nincteen times lighter, that is rarer than Gold; and Gold it felf is fo rare, that it will very cafily, without making any Refiftance, fuffer the Magnecick Effluvia to pafs through it, and will eafily admit Quickfilver into its Pores, and will alfo let Water go through it, that is, it has more Pores than folid Parts; confequently Water will have above forty times as many Pores as folid Parts. And indeed you may think, Gold and Water, and all other Bodies (with great Probability) as much rarer ftill as you pleafe. For if we conceive the Particles of Bodies to be So difpofed among f themfelves, that the Intervals, or empty Spaces between them, may be equal in Magnitude to them all; and that thefe Particles may be compofed of other Particles much fmaller, mbich bave as much cmpty Space bet ween them, as equals all the Magnitudes of there fmaller Particles: And that in like manner, thefe fralLer Particles are again compojed of otbers much fmaller; all which together, are cqual to all the Pores or empty Spaces between them, and So on perpetually, till yout come to folid Particles, frich as have no Pores or empty Spaces within them. And if in any grofs Body there be, for in. fiance, three fuch degrees of Particles, the leaft of which are folid; this Body ruill have feven times more Pores than Jolid Rarts. But if there be four

Chap. 27. of Natural Philosophy?

16. I doubt not but that this Opinion will be efteemed a Conjecture only. But if it fhall afterwards be made appear to have in it all the Marks of Truth, and that | q this c_{0} |
| :---: | all the Properties of Light can be deduced from it: I hope that That which at firft looks like a Conjecture will be then received for a very certain and manifent Truth.
17. And firft, that we are fitted by Nature to perceive what we call Light, though there were nothing that bore any Refemblance to it without us, we have
18. That me are fitted to percciac Light. a very convincing Experience: For if, when it is the Darkeft that can be, we rub our Eyes in one particular manner, or if by chance we receive a very hard Blow upon them, fo that the internal Parts of the Eyes are very much fhaken by the Blow, we fee Light, and very bright Sparks, which ceafe as foon as the Motion ceafes.
four furch degrees of Particles, the leaft of which are Solid, the Body woill bave fifteen times more Pores than Solid Parts. If there be five Degrees the Body will have one and thirty times more Pores than Parts. If $\sqrt{2 x}$ Degrees, the Budy mill have Sixty and three times more Pores than jolid Parts, and s_{0} on perpertually. Newt. Opt. p. 243 .

The Reafon therefore why fome Bodies are Opake, is not the want of Pores which are paffiable on every Side in ftreight Lines; bur either the unequal Denfiry of the Parts, or the Largenels of the Pores, either filled with other fort of Matter, or elfe empty; by which means the Rays of Light in paffing through, are perpectually bent backward and forward by innumerable Reflections and Refractions, till at laft they hit upon the Parts themfelves of the Body (See the Notes below on Art. 35°.) and fo are wholly extinguiihed and lof. Hence it is, that Cork, Paper, Wood, ef. are Opake; and Clars Diamonds, \&̌c. transparent. For in the Confines of Paris that are alike, and of equal Denfity, as the Parts of Clafs, Water, and Diamonds are, by reafon of the equal Atrrattion on all Sides, there is no Keflexion or Kefraction ; and therefore the Rays of Light which enter the firft Superficies of thefe Bodies eafily go on (except fuch as chance to fall upon the folid Parts, and are extin-
guiched. See the Notes on Art. 35. below) in a right Line through the whole Body. But in the Confines of Parts which are very unequal in Denfity, fuch as the Parts of Wood or Paper, compared with each other, or with the Air, or empty Space in the larger Pores of them, the greateft Reflexions or Refractions are made, becaufe of the unequal Attraction; therefore the Rays can by no means pafs through fuch Bodies; but are perpetually bent backward and forward, and at laft lof. That this Difcontinnity of Parts is the principal Carfe of the Opacity of Bodics, will appear by confidering that 0 pake Subffances become tranfparent, by filling up their Pores with any Subfance of equal, or almoft equal Denfity with their Parts. Thus Paper dipp'd in Watcr or Oil, the Oculus Mundi Stone frecped in Water, Lin-nen-Cloth oiled or varnihed, and many other Subffances foaked in fuch Liquors as will intimately pervade their little Pores, become by that means more tranfparent than othervije; fo, on the contrary, the moft tranjfarcent Sutbfances may by cuacruating their Pores, or Separating their Parts be rendered fufficiently opake, as Salts or wet Paper, or the Oculus Mundi Stone, by being dried, Horn by being. fcraped, Glafs by being reduced to Powder, or otberwife flawed ;-and Water by being formed into many fmall Bub-blesu-become Opakc. Newt.Opt. p. 224 .
18. That there is fucts a Thing as fubtil Matter, seas proved before.
18. Further, That there is fuch a Thing as fubtil Matter which penetrates the Pores of tran(parent Bodies, the Difpofition of which to recede from the Center of the luminous Body in ftreight Lines, may here be called fecundary or derived Light, has been fufficiently proved before, when we fhewed the Neceffity of the fecond Element; and we may venture to affirm, that none of thofe Things would come to pafs withour it, which we have before obferved to come to pars, when we explained thofe Motions which are ufually afcribed to the Fear of a Vacuum.
19. That luminous Bodiespryh this Matter all Ways; and what it is zhat Flame enffitsin.
so. Whencel it is that Sparks arife, spon ftriking or rubbing two hard Bodies againgt each other.
19. Nothing further remains, but to thow that luminous Bodies do actually pufh this Matter every Way; which they will be found to do, if it be true, that the Parts are very fmall, and very much agitated. Let us then examine all the luminous Bodies that we know, and fee if the Parts of which they are compofed, be not as fmall, and as much agitated as we fuppofe. And to begin with Flame. It has been already fo plainly demonftrated, that it is compofed of Parts very fmall, and which move with the greateft Celerity, that it is fuperfluous to fay any more about it.
20. We fee alfo, that there arifes very bright Sparks upon ftriking a Flint againtt Steel, or two Flints againft each other, or an Indian Cane againft a common one, or by ftrokeing the Back of a Cat in the Dark, when the Weather is dry and cold, I and in a NJultitude of other Things. The Caufe of all which, is only this, that fome of the Particles of thefe Bodies being entangled between others when they are ftruck, acquire in flying off, a Motion like that of Flame, by which they in like manner pufh forward the fmall Globules of the fecond Element.
${ }^{21}$ r.The Curfe 21 . There is fome fort of rotten Wood, and of Filhes, of the Shining when they begin to be corrupted, which fhine very bright. of yotten Wood, and of Now a Body cannot putrify or be corrupted, but by the fome Fifhes that are cor:Mpted. in rotten Wood, from the Largenels of its Pores, and from its Lightnefs, which render it different from what it was before, as a Coal, and the Wcod out of which it is made differ from each other.) We muft own therefore,

[^49]rubbed, will Thine bright, not by impelling or prefling upon the Particles of the fecond Element, for there is no fuch Thing ; but by fending forth fmall Yarricles which are the very Light it Kelf.

Chap. 27. of Natural Philosophy:

that the Motion of the Parts which we fuppofe in luminous Bodies, I is to be found here allo.
22. It is not fo eafy to tell certainly, what fort of 22 . of the Motion that is, which makes fome Worms and Flies to Light of fhine in the Dark: However it is very probable, that fome fort of Matter is exhaled out of thefe Infects, like the Sweat of other Animals, and that this pufhes the Matter of the fecond Element; and this is confirmed from hence, that they ceafe to thine as foon as they are dead.
23. The Sun and the Stars are the moft luminous Bodies of any that we know; but by reafon of their great Diftance, it is impoffible to make appear by any Experi- Stars. ments taken near them, that all their Parts are in Motion ; all that we can affirm, is only this, that we do not obferve any Thing to the contrary: And fince they produce the fame Effects in us, that Flame does, we ought to think, that they refemble it in that by-which thefe Effects are produced, viz. in the Motion of their Parts.
24. If it were truc, what they fay of a Carburcie and a Diamond, viz. that they fhine in the Dark; I hould freely own, that I am miftaken in all that I have faid about Light; for there is no Probability, that Bodies fo hard, fhould be compofed of Parts which feparately are in any Sort of Agitation. But it is certain, that there are only idle Stories, told without any Proof, and received by credulous Perfons, for I have often times experienced the contrary my felf.
25. Tis true indeed, That a Diamond fhines very bright in a darkifh Place; but the Reafon of this is, becaufe it is fo cut, that the Sides reflec्氏t all the Light which they receive towards the fame Past, as fhall be more fully explained * afterwards, when we come to treat of the * Sece.46. Refraction of Light.
26. We have lately had an Account from England, that 2 fome Diamonds rubbed in the Dark, have fhined fo bright for a thort time, that a Word or two might be read by Light of them. I have not obferved this in any
> 1. Is to be found here alfo.) The famous Mr. Royle made an Experiment of this Matter, which is very well worth taking notice of. He put a piece of rotten Wood into the Air Pump, which was in a manner extinguifhed and coafed to fhine, when the Air was exhauted; bur uponlet-
ting the Air in again, it feemed to be new lighted, and thined as before. See the Pbilofophical Tranfact. Numb. 31. For this was true Flame, and like all other Flame cannot be preferved without Air.
2. Some Diamonds rablued in the $\left.D_{a r k}\right)$ See Art, 20, above.

Diamonds that I bave tried; however it may be true, without contradieting any Thing that I have hitherto wrote. For the Rubbing may raife fome Agitation, if not in the Parts of the Diamond, yet at leatt in fome Matter contained in the Pores of it, which continuing in Motion in the fame manner as the Flame in the Pores of a burning Coal, may for fome time puth the fecond Elelement which is all round it, and difpofe it to raife a fmall Senfation of Light.
27. Of the BoulognStone.
28. The Reafon of this Stone's Shining.
27. Though we have no Jewels which fhine in the Dark, yet we have a Stone that is truly luminous: This Stone was accidentally found by an Italian Chymijt near Boulogn in a hollow Place caufed by a Torrent. After having put it into a Fire for fix Hours, he took it out, and let it cool; and when it had been expofed to the Light of the Air for fome time, upon carrying it afterwards into the Dark, he firt perceived it to look like a FireCoal covered over with a few Afhes. I have feen fome thine near half a quarter of an Hour, after which their Light vanifhed, but by expofing them to the Light of the Air for a fhort time, we could make them fhine again when we pleafed.
28. The Reafon hereof very probably is,' that the Fire has made this Stone extremely porous, fo that among the Parts which are almoft wholly disjoined from each other, there may be fome 1 fo eafy to be put in Motion, that the Light of the Air alone is capable of agitating them, and they may be fo difpofed to retain this Motion, that they may keep it after they are removed from amongft the luminous Bodies, which put them in Motion; and this is confirmed from hence, that when this Experiment is often repeated, thefe Parts exhale, and the Stone quite lofes its fhining Quality; which Quality cannot be preferved above four or five Years, though the Stone be carefully thut up in a Box, where no Light can come it it.
29. For a further Confirmation of what has been faid, we may obferve, that if this Stone be kept too long in the Fire, or though it be kept in it but fix Hours, yet

1. So eafy to be prut in Motion) In much the fame manner may the Phopphorus be accounted for; (the manner of preparing it, is at large explained by the famous Mr. Boyle, to whom I refer yous) for it is very probable, that fome fulphureous

Parts of the Urine, prepared over a very hotFire, are fo volatile and ealy to be put in Morion, that they are turned into a kind of Flume, by the Agitation of the grofier, or perhaps of the finer Air.

Chap. 27. of Natural Philosophy.

if the Fire be very hot, all the Pares of it which cannot refiit the Fire, may be carried off, and then the remaining Parts may be fo heavy, as not to be thaked by the Light ; in which cafe the Stone ought not to thine, and fo we find by Fxnerience.
30. Having thus hown the Truth of thofe three Things which comprehend the Whole of our Conjecture, about Primitive or Original Light, concerning what they call fecondary or derivative Light, we obferve firft; that becaufe it does not confift in the actual Motion of the fubthe Matter which fills the Pores of tranfparent Bodies, but only in the Tendency or Difpofition which this Matter has to Motion; it neceffarily follows, that luminous Bodies, be they never fo diftant, ought to propagate their Force, and 1 to affect our Senfes in a Moment of Time; becaufe the Matter which is pufhed, being extended every way without Interruption, like a very long Stick; the luminous Body cannot pufh forward the nearelt Part of it, but at the fame time it muft impell the furtheft Part likewife.
31. But perhaps fome may think, that this Train of 31. A Dif: Matter which is extended from one Point of the lumi- ficulty aborit nous Body, to a Point of the Object which it illumi- the A clinzt nates, and which is called a Ray of Light, may more pro- Light. perly be compared to a Thread than to a Stick, becaufe its Parts are not fo firmly connected together, as thofe of a Stick are; and fo it may be conceived, that as we can move one end of a Thread, without moving in the leaft the other End, fo the luminous Body may impel the Matter of the fecond Element to which it is applied, without neceffarily continuing that Impreffion to any great diftance. However, if we confider, that the World is full of Matter, and that a Ray of Light is always furrounded by a great many otheris, which hinder it from bending, as a Thread does which is not furrounded by others, we thall be of Opinion, that every Ray of

[^50][^51]Light I ought to propagate the Force of the luminous Body in the fame manner, as if it were as ftiff as a Stick.
32.That a 32. In order to explain what is difficult in this Matter, let us compare this Action of the fecond Element which tranfmits Light, to the Action of Water contained in a long thick Tube ftopped at the lower End; and then let us confider, that all the fmall Threads of which this grofs Column of Water is compofed, do every one in particular prefs with its whole Weight upon the Bottom; and that if we pour in never fo little Oil, it will prefs upon the Bottom in the fame manner as if we had poured it upon a ftiff Stick.
33. If this 'Comparifon does not feem juft, becaufe in this Inftance the Water is contained in a Veffel; take another: Suppofe the Surface of the Earth, inftead of being unequal and rough as it is now, were round and fmooth, and imagine it to be covered all over with Water to a certain Height; then would cvery Point of the Earth's Surface be preffed upon by the whole Weight of the Thread of Water which correlpends to it; now compare the Action of the Rays of Light to the Action of this Water, and you will find, that they are capable of acting in the fame manner, as if they were as ftiff as a Stick.
34. Why the action of Light grows weaker, the more diffant the luminous Body is.

Tab.IV.
Fig. 3.
34. It is true however, and muft be granted, that there is fome Difference between thefe two Things: For the Threads of the Water approach nearer and nearer to each other, and tend to the fame Center, whereas the Rays of Light go from the Center and fpread themfelves towards the fpherical Superficies which we may conceive all round them: But this Difference will only be of ufe, to fhow us the Reafon of a very remarkable Property of Light; which is, that the Impreffion of the luminous Body does not come entire to the Object; but is weakened and diminifhed a little, according as it fpreads it felf, and proportionably to its Diftance from the Center of Action. In order to explain this, let us fuppofe the Tube ABC, which grows wider towards the Top, to be filled with Water as high as DE, and that afterwards with a $S y$ ringe we put as much Water in at the End A of this Tube, as will fill the Space AFG, which is of a confiderable Height, but of a fmall Breadth. It is certain, that this Addition of Water, will raife up the Water at HI a

[^52]
Chap.2\%. of Natural Philosophy?

little, but that it will be fcarce fenfibly raifed at DE. Now this explains the Nature of Light perfectly well. For as we cannot lay that the W ater at DE is not raifed at all, but only that it is raifed but a very lictle: So we may conclude, that the furthee the Rays of Light are diftant from the luminous Body, the weaker they are; which agrees with Experience.
35. Now as we are certain, that a Body in Motion alters its Ditermination when it meets with another Body that refifts i: So likewife we may conclude, that Light, when it falls I upon the Surface of a folid Body ought to be turned back or reflected. Thus for Example, if the fmall Globules which are in the Line CD reprefent the Parts of the fecond Element compofing a Ray of Light, which falls upon the folid Body $A B$, its Action ought to be continued towards E, along the Line DE, in fuch a manner, as that the Angle of Refexion BDE ought to be equal to the Angle of Incidence ADC; that is, this Action ought to be propagated in the fame Lines that the Globule C would defcribe, if it were alone, and moved in the Line CD:

1. Upon the Surfacc of a folid Body)

The Reflexion of the Rays of Light is caufed, not by falling upon the Parts themleives of the refleting Body, but by a certain Power equally diffufed all over the Surface of the Body, whereby it acts upon the Ray to attract or repel it, withost immediate Cortact ; by which fame Power in other Circumftances the Ray is refracted; and by which fame Power it is at firft fent forth from the lucid Eody; as the fore-cited admirable Perfon has demonftrated by many Arguments.
I. Though thofe clafies which we call plain and polithed, do indeed appear to the Eye to have a finooth uxiform Surface; yet in reality, (fince polifhing is nothing elfe but wearing away and breaking the Protuberances of the Glafs, with Sand, Putty, or Tripoly) their surfaces are very far from being plain and fmooth: Now if the Rays of Light were reflected by impinging on the folid Parts of the Clafs, their Reffexions could not be fo exaft and regular, as we find they are; nay, the Kays ought to be difperfed all Ways, almoft as much by the beft polifined Glafs, as by the roughert. Sie Nemt. Opt. p. $2 \neq 0$.
II. If the red and blue Rays which are feparated by a Prifm (the manner of doing which, Sce in the Notes on firt. 65 . below.) be all of them caft on a fecond Prifm, in fuch manner, that they are all alike intdent upon it ; the fecond Prifm may be fo inclined to the incident Rays, that thole which are of a blue Colour, Thall be all reflected by it, and yet thofe of a red Co'oux (though falling with the fame Obliquity) pretty copicully tranfmitted. Novt if the Reflexion be caufed by the impinging of the Rays upon the Patt: of the Glafs; how comes it to paf; that when all the Rays fall with the fame Obliquity, the Blue Inould whol!y impinge on the folid Darts, fo as to be all reflefted, and yet the red fud Pores enough in the fame place to. be in a great meafure traifmitted? Pag. 239.
ill. Where two Glafies truch one anothe:, there is no !erfhie Reflexion, and yet there is no Reafon why the Rays fhould not impinge on the Parts of Glafs as truch when contiguous to other Glafs, as when conriguous to Air. Ibid.
IV. When the lop of a Watabubble, made by the working up of Sone and Water, by the contiaual

Tab.IV. Fig. 4.

35. Why Lisht mice:-

 ing mith cern taiu Bodics ought to be reficcied.For it is evident, that the Globule D ought to have a Tendency, and to be difpofed to go where it would really go, if its Power were put into act. And fince this Globule, upon meeting with the Body $A B$, would neither go towards G , nor towards H , but only towards F , it muft be allowed, that it is the Globule F only which is impelled
fubfiding and exhaling of the Water grows very thin; there is no manifeft Reflexion, not only at the leaft Thicknefles, but alfo at many ocher Thickneffes of the Bubble continually greater and greater; and yet in the Superficies of the thinned Bo$d y$, where it is of any one Thickners, there are as many folid Parts for the Rays to impinge on as where it is of any other Thicknels. Ibid.

V . If the red and blue Rays reparated by a Prifm (the manner of doing which, as woas faid before, you may See in the Notes on Art. 65. below be afterwards caft dittinctly and fucceffively upon a thin Plate of any tranfparent Matter, whofe Thicknefles grow continually greater and greater (fuch as a Plate of Air contained between a plain Glafs, and a Glafs that is a little gibbous, fuch as the Object-Glafs of a long Telefcope) this Plate in the very fame Part of it will reflect all the Rays that are of one Colour, and tranfmit all thofe that are of another Colour ; in different Parts of it, it will tranfmit Rays of the fame Colour at one Thicknefs, and reflect them at another, and this by innumerable Fitts. Now it is not any way to be imagined or conceived, that it can fo happen by chance, that in the very fome Part of the Plate, and with the very fame Obliquity of the Rays, all the Rays that are of one Colour Thould impinge upon the folid larts, and all the Rays that are of another Colour fhould hit upon the lores only; and that in different Parts of the Plate, in one Place the blue Rays fhould all impinge upon the Parts of the Body, and the red Rays run ail into the Pores, and in another Place where the Plate is a little thicker or a little thinner, on the contrary the blue Rays only fhould run all into the Pores, and all the red Rays impinge upon the Parrs. P،dz. 240 .
VI. In the Paffage of Light out of Glafs into Air there is a Reflexi-
on as ftrong as in its Paffage out of Air into Glafs, or rather a little ftronger, and by many degrees ftronger than in its Paffage out of Glafs into Water. And it feems not probable, that Air Thould have more reflecting Parts than Water or Glafs. But if that Should poffibly be fuppofed, yet it will avail nothing, for the Reflexion is as ftrong or ftronger when all the Air is removed from the further Surface of the Glafs, as when it is adjacent to it. p.237. Now if any one Chould imagine according to the Opinion of Cartes, that the fubtle Matter at the further Surface of the Glafs is denfer than any other Matter whatoever, and upon that Account more ftrong to reflect Light than any other Bodies; befides that we have before demonftrated, that that Matter is only a fictitious Thing ; and that if we fhould allow this Matter, and its Power to reflect Light, the Iight could not be propagated by it at the Beginning, but muft immediately be all reflected back upon the lucid Body as foon as it is fent forth from it; befides thefe I fay, he will be convinced of the Falficy of this Fiction by the following Experiment.
VIII. If Light in its Paffage out of Glafs into Air be incident more obliquely than at an Angle of 40 or 4 I Degrees, it is wholly reflected, if lefs obliquely, it is in great meafure tranfmitted. Now it is not to be imagined, that Light, at one Degree of Obliquity, fhould meet with Pores enough in the Air to tranfmit the greater Part of it; and at another degree of Obliquity, fhould meat with nothing but Parts to refleet it wholly; efpecially, confidering, that in its Paffage out of Air into Glafs, how oblique foever be its Incidence, it finds Pores enough in the Clafs, to tranfmit a grear Part of it. If any Man fuppofe, that it is not rifleeted by the Air, but by the outmoft fuperficial Parts of the Glafs, that will appear to be falle, by ap-

Chap. 27. of Natural Philosophyo

led by it, and which receives its Action. And this is confirmed by Experience. For when the Light falls upon the Surface of any Opake and folid Body, as Gold or Steel, we fee its Rays are rellected, and the Angle of this Reflexion is equal to the Angle of Incidence.
36. Now this being foin one folid Body, fuch as Gold or any other Metal; as it is a general Truth, it ought to extend to all Sorts of folid Bodies, and the Light ought but refedeiei to be reflected in Angles equal to thofe of their Incidence. Wherefore fince the Pores of two tranfparent Bodies which touch each other, cannot exactly anfwer to one another;
plying Water or Oil behind fome part of the Glats inttead of Air. For fo in a convenient Obliquity of the Rays fuppofe of 45 or 46 De grees, at which they are all reflected where the Air is adjacent to the Glafs, they will be in great meafure tranfnitted where the Water is adjacent to it ; which argues, that their Reflexion or Tranfmiffion depends on the Conftitution of the Air and Water, or Oil behind the Glafs, and not on the ftriking of the Rays upon the Parts of the Glafs, viz. that the Rays are not reflected till they get to the further Surface of the Glafs, and begin to go out of it. For if when they are going out of it, they fall upon Oil or Water, they go on, becaufe the Attraction of the Glafs is almoft ballanced and rendred ineffectual, by the contrary Attraction of the Liquor that fticks to it. But if the Rays; which go out of the further Superficies, go into a Vacuum, which has no attractive Force, or into Air which has very little, and therefore cannot ballance the Attraction of the Glats, and render it ineffectual, then the Atraction of the Glafs reflects them, by drawing and bringing them back. And this is ftill more evident, by laying together two Prifms of Glafs, or two Object-Glaffes of very long Telefcopes, the one plain, the other a little convex, and fo compreffing them, that they do not fully touch, nor are too far afunder. For the Light which falls upon the farther Surface of the firt Glafs, where the Interval between the Glafles, is not above the Ten hundred thoufandth part of an Inch, will go through that Surface, and through the sir or Vaczum between the Glafles, and eriter into the fecond Glafs. But if the fecond

G'ars be taken away, the Light which goes out of the fecond Surface of the fiift Glafs into the Air or Vaczumz that is between the Glaffes, will not go on forwards, but turns back into the firft Glafs, and is reflcefed. From whence it is evident, that the Rays are drawn back by the Power of the firft Glafs, there being nothing elfe to turn them back. $p \cdot 23^{8}$, and 347. And hence it is alfo manifeft, as was before obferved, that the Rays are not reflected by 'any fubtle Matter or Æther, becaufe tha: Matter ought to reflect them not at all the lefs, when the fecond Glafs is fo placed as not quite to touch the fift, than when it is quite taken away.

Lafly, If any one fhould ask; becaule we have afcribed the Reflexion of Rays to the. Action of the whole Superficies of Bodies, without immediately touching them; how it comes to pals, that all Rays are not reflected by all Superficies but while fome are reflected, others are retracted and enter in: This excellent Perfon fhows, that there are certain Vibrations (or fome fuch kind of Property) both in the Bodies themfelves, and in the Rays of Light, imprefled upon the Rays, either by the Action of the Body which emits them, or by the Action of fome other Bodies; whence it comes to pafs, that thofe Rays which are in that Part of their Vibration which confpires with the Motion of the Parts of the Body, enter into the Body, and are tranfmitred by Refraction; and thore which are on the orher Part of their Vibration, are reflected. Sec Newot. Opt. p. 255: with the folid Parts of Water, Glafs, or Chryltal; it is impoffible, but that tranfparent Bodies mult reflect fome part of the Light which falls upon their Surface; and they mult reflect fo much the more, as the Rays fall more oblique, becaufe in that Pofition they meet with more of the folid Parts of the tranfparent Body upon which they fall.
37. Let us now confider, what will happen to Rays that pafs out of one tranfparent Medium into another, upon whofe Surface they fall obliquely. We forefee 1 that they ought to be refracted agrecably to what was faid before concerning Refraction, becaufe thefe tranfparent Bodies being of a different Nature, the one may afford an eafier Paffage to the Light than the other, and fo the Rays ought to be lefs inclined, or nearer to the Perpendicular on that Side which more eafily admits them.
38. Nor are we to think, that a tranfparent Body will afford fo much the eafier Paffage to Light, by how much the eafier it yields to other groffer Bodies which make Way for themfelves, by removing its Parts: Jut the contrary: For as the Paffages for Light are already made,

[^53]whetber that Power by which Glafs acts upon Light Jhall caufe it to be reflected, or fuffer it to be tranfmitted.
3. Becanfe thefe Surfaces of tranfparent Bodies which have the greateff refrating Power, reflect the greateft quantity of Light. Newt. Opt. p. 244 .
4. Becaufe, although the Forces of Bodies to reflect and retract Light, are very nearly proportional to the Denfities of the fame Bodies; yet unctuous and fulphureous Bodies refract more than others of the fame Denfity. For the Rays act with greater Force upon thofe Bodies to fet them on Fire, than they do upon others; and thefe Bodies aft upon the Rays again with greater Fnice by murual Attraction to refract them. p. 245. ơc.

Laftly. Becaufe, not only the Rays which are tranfmitted through Glafs are reflected ; but alfo thofe which are near the Extremities of it in Air or in a Vacustm, or even thofe which are near the extreme Parts of any upake Bodies (as the Edges of Knives, \& cc.) are bent by the Attraftion of the Body. p.293, ofc.
it can move fo much the eafier as the Parts of the Body through which it paffes, are more difficult to be put out of their Places; becaure it is the lefs liable to lofe its Motion in paffing, in the fame manner as a Bowl will run eafier upon the firm hard Ground, than upon foft Ground, or upon the Grafs. And thus as Water is in fome Senfe harder than Air, and Glafs harder than Water, and Chryftal harder than Glafs, it follows, 1 hat Light ought to pals more eafily through Water, Glafs and Chryttal, than through Air; and its Rays ought to be lefs inclined, or to approach nearer to the Perpendicular in thefe Bodies than in Air.
39. This may be tried many Ways; I will fhow you one that feems to me very evident. I caufed a Braif Box $A B C D$ to be made, with a Cover to it of the fame Metal. The Bottom BC was a Piece of Verrice Chryttal, under which I glued a piece of Paper, with feveral Marks made upon it at Pleafure. I expofed this Box to the Rays of the Sun, that a Ray, fuch as FE might pafs the Cover at the Hole E, and looking underneath, I obferved the Point G, which the Ray came to; then without altering the Situation of the Box, which was full of Air only, I filled it with Water, which I poured in at the Hole M ; then I obferved, that the Ray did not come fo far as G, but only to L, fo that it was nearer the Perperdicular HI, than it was before.
40. Now to find whether a Ray paffing out of Water into Air be turned from the Perpendicullar, we may make. ufe of a very common Experiment. We may put any Body, a piece of Money fuppofe, at the Bottom of a hollow Veffel, which contains nothing but Air; then we may move our Eye B back, till the Edge of the Veffel juft hides the Object A; then let the Veffel be filled with Water: after which, the Object without having changed its Place, will begin to appear by the Ray $C B$, which coming from A by C, will be bent, and removed from the Perpendicular ECF, whereas otherwife the Ray would have gone ffreight on to D .

1. That Light ougbt to pafsmore eafily) Mr. LeClerc has committed a furprizing Miftake here. Therefore, fays he, the greater the Refiffance of the Body is zepon which thes Ray falls, So much the more does it recede from thie Perpendicular, and the lefs the Refifance, the lefs does it recede.

Wherefore a Ray falling upon Water out of Air, goes further from the Perpendicular; on the contrary, a Ray coming out of Water into Air aspronches nearer to the Perpendicular ; becaufe Air refigs it lefs than Water. Pbyf. Book V. Chap. viii. Sett. 17. Contrary to all Experience.
41. of the 4I. Becaufe Refraction will be of great Ufe hereafter, Refration of it is worth while to explain the Nature of it fully, by

Light pafjing throzzo a Glafs Prifm. Tab. IV.
Fig. 7. confidering how it is made, when Light paffes out of Air into Glaffes of various forts of Figures. Suppofe then, in the firft Place I a triangular Prifm ABC, upon one Side of which, fuppofe $A B$ the Ray DE falls obliquely. From what was faid before concerning the Rays paffing out of Air into Glafs, it follows, that it ought not to go on in a ftrcight Line to F, but to G, in order to approach nearer the Line HEI, which is fuppofed to be drawn through the Point E, upon which the Ray falls, and to be perpendicular to the Surface AB. After which, the Ray EG pafing obliquely out of Glafs into Air, ought not to go directly to L, but to M , becaufe it is turned from the Perpendicular NGO.
42. Of the 42. Suppofe now a Lens or a Glafs convex on both Reffraction of Sides, fuch as is reprefented by the Figure $2 \mathrm{~B}_{3} \mathrm{~K}$, and
Light pafing throte: ${ }^{\text {a }}$ ConvesLight.

Tab. IV.
Fig. 8. imagine a great many parallel Rays, fuch as $A B, C D$, EF, to fall upon its Surface; now in order to find out how there Rays ought to be refracted, we muft firft draw through the Points B, D, F, Lines perpendicular to the Glafs, that is, the Lines ABK, HDI, LFM, tending towards the Point G, which I fuppofe to be the Center of the Superficies 2 B 3 . This being done, we may confider, that the Ray $A B$, being in the Perpendicular it felf, ought not be at all refracted as it paffes out of Air into Glafs, but to go on directly towards K, where it falls again perpendicular upon the Superficies of the Air 2_{3} (becaufe it comes from the Point R , which is the Center of this Superficies) and therefore it will contrinue to go ftrait on ftill towards G, without any Refraction. But as to the other Rays, fuch as CD, and EF, becaufe they do not fall perpendicularly, it is evident, that they will not go directly to O and N , but will ap= proach nearer to the Perpendiculars HI, LM, and go to Q and P, and by this means they will tend towards the Ray ABK; and becaufe, having drawn the Lines TQI, SPM perpendicular through the Points P and Q, that is, the Lines which tend to the Point R, we find that the Rays DQ, FP fall obliquely on the Surface of the Air, we conclude, that they will be refracted, and go from the Perpendicular. So that DQ will not go directly to X put to G ? and $F P$ alfo will not go directly to V, but to

[^54]the fame Point G. The fame may be demonftrated of the Rays, that fall on the other Side of AB , which will be bent fo, as to interfect the firtt, ${ }^{1}$ fomewhere near the Point G; thus we fee, that it is the Property of a Convex-Glafs, to collect together the Rays of Light which fall parallel upon it.
43. If whilft the Glafs remains in the fame Situation, parallel Rays fall upon it from fome other Place, we fhall find that they will meet together in fome other Point, and not in G; thus if they come from the right Side of thofe before drawn, they will meet on the left Side, viz. near Y; and on the contrary, if they come from the left Side, they will meet on the right Side fomewhere near Z .
44. Let us confider in the Third Place, A Glafs that is thinner in the Middle than at the Edges, that is, a Glafs concave on both Sides, fuch as is reprefented by GBHIMK, and fuppofe the parallel Rays, $A B, C D, E F$, to fall upon it. Now in order to fee how they ought to be refracted, let us erect Perpendiculars at the Points B, D, F, where they enter the Glafs: This being done; fince the Ray $A B$ coincides with the Perpendicular, it will enter the Glafs as far as M without any Refraction, where becaufe it falls perpendicularly upon the Superficies of the Air, it will no more be refracted at going out, than it was at entring into the Glafs, and confequently it will go directly to L . But becaufe the Ray CD falls obliquely upon the Surface of the Glafs, it will not go directly to P, but will turn to Q , becaufe it tends towards the Perpendicular NDO; and becaufe the Ray DQ falls obliquely upon the Surface of the Air alfo, it will not go directly to T, but will be refracted towards V, becaufe it goes from the Perpendicular RQS: So likewife if we examine the Ray EF, we thall find by the like Way of Reafoning, that it will go to Y, and from thence to Z. Whence we fee, that it is the Property of a Concave-Gla S_{2} to difperfe the Rays which fall parallel upon it.

[^55]whole Thicknefs BK. See Huzen's Diopt. Prop. 27. p. 94. and Barrown Sect. V.
2. To difperfe the Rays) In fuch a manner that they may feem to come from a fmallLine, or fuch Part of the Line Tab. IV. AB as the foremention- Fig. 9. ea fimall Line was, into which they were gathered in paffing through a Convex-Glafs.

45. How theLicht is refracked in

Tab. V.
Fig. I:
45. Let us confider in the Fourth Place, a Glafs cut with feveral Surfaces on the one Side, but plain on the other, fuch as is reprefented by the Figure ABCDETS , and fuppofe the Rays FG, HI to fall parallel upon it : Draw Perpendiculars in the Points G and I; then becaure, from what was before faid, thefe Rays ought to go towards the Perpendiculars, we are fure that they will bend towards K and Q ; and becaufe they again fall obliquely upon the Surface of the Air ST, we conclude that they will be refiacted a fecond Time; fo that GK will tend towards L, and IQ towards M; and becaufe all the parallel Rays that fall upon the fame plain Superficies, are equally inclined to it, they will be cqually refracted, and confequently will be parallel when they come out, fo that thofe which fall upon the Superficies BC will go along with the Ray $\mathrm{K} L$, and thore which fall upon AB , CD, DE, will go along with the Rays QM, PN, and RO.
44. $\mathrm{V}^{\mathrm{V} \text { bererin }} 4^{6}$. So that if the Suiface TS were covered with an
 , trumeston sfis. upor the Superficies $A B, B C, C D, D E$, it is evident, that none of them will come upon the Parts $S Q$ and $R T$, and confequently they will look darker; whereas the Part QR receiving all the Light which falls upon every one of the Surfaces ought to appear very bright; and herein confifts the Luiftre of a Diamond and other precious Stones which are any way tranfparent. For they will not fhine, unlefs they be cut with a great many Superficies in fuch a Manner as to turn the Rays of Light towards one Place at the Bottom, where is a fimall Plate of Gold or Silver to receive the Light, and refect it back to cur Eyes.
47. Of the
Refiation of 47. Lafty, Let us fuppofe a plain Glafs of equal Thickness Refrantion of every where, fuch as $A B C D$, upon which the parallel
L Likh pafing thro aplaing Rays, EF, GH, IL, if they fall obliquely, fall with equal Glafs.
Tab. V. Obliquity, fo that they are equally refracted, by approachTab. V. Fig. る. ing every one of them towards the Perpendicular, and therefore go to M, O, and Q , being ftill parallel, and confequently equally inclined to the Surface BC ; whence. if follows, that in pafing into Air, they recede equally from their Perpendiculars, and fo continue always parallel. But we muft obferve here, that the Rays EF, GH , IL, which incline towards the Right, when they firt enter into the Glafs, are inclined as much towards the Left, when they come out of it : So that we may fay, the Glafs

Chap. 27. of Natural Philosophy?

${ }^{3}$ undoes that by the fecond Refraction, which it did by the Firft. 2
48. Since Light not only Thines, but heats alfo, we may here add; that though we cannot perceive any Inequality in the Action of luminous Bodies, but that they feem to impell uniformly the fecond Element which fur- Heat. rounds them, towards thofe Bodies which terminate their Action; yet Reafon fhows us, that they act more ftrongly at fome times than at others; not only becaufe their Parts are not all equal, nor are they always the fame which are applied to the fame furrounding Matter to impell it ; but alfo becaufe this Action is at firft communicated to a tranfparent and liquid Medium, the Parts of which continually move out of their Places. And this caufes the fmall Globules of the fecond Element to imprefs a kind of Trembling upon the Parts of the Bodies to which they are impelled by the luminous Bodies; and becaufe Heat confiits in fuch a kind of Agitation, it foilows, that all luminous Bodies ought to produce fome Heat.
49. However, it may happen that this Heat may not be at all perceivable, cither becaufe of the Weakners of the luminous Body, or becaufe the Organ upon which it ass is hoter than it. Thus if coming from a Fire we heminous Boexpofe our felves in a cold Night to the Rays of the Moon, we fhall find it very cold; becaufe in fuch Circumftances, we give more Heat to the Air which furrounds us, than that does to us.
50. And as the Sun is very bright, fo ought it to raife so. The fur the moft fenfible Heat in us; and fo we find by Ex-prifing Power perience every Day that it does; nay to that Degree, of theat. that when its Rays are collected by a concave-Glafs, they will not only fet combuftible Bodies on which they fall, on Fire, but will melt Metals, Stones, and Flints,
r. Oudoes that by the fecond Rcfraction) We mult have a Care of thinking, that the fecond

Fig. 2. firtt, that the Object is feen in its true Place; for the Ray BQ extended backwards will not coincide with the Ray LI, but fall to the right Hand of it, and that fo much the more, the thicker the Glafs is. But as to Colowirs, the fecond Refraction does indeed undo the firlt. See the Notes or Art. 65 .
2. That double and irregular Refraction of Ifland Chryfal, whereby not only the oblique Rays are Ceparated into two Parts on the fame Superficies by a double Refraction; but alfo thofe that fall perpendicularly are half of them refracted likewife, is very different from all thofe hitherto explained: The Explication of this you may fee in Nemot, Opt. p. 331.
which are very difficult to melt with Fire; as I my felf have feen.
51. That the coloured Body is suot the immediate Caufe of the Senfayimo of Colourer

5 I. Having fufficiently explained the Nature of Light, and the common Properties of it ; the firt Thing that we obferve concerning Colours, is, that they are not perceived by the immediate Application of the coloured Ob . ject to the Organ of Senfation: From whence it follows, that it does not of it felf excite in us that Senfation of Colour which we have upon looking on it; for we certainly know, that one Body cannot act upon another without immediate Contact ; but whatever there may be in the coloured Object, in which its Colour conflifs, we muft think, that it acts thereby upon fome Medium which it finds, and by that Means acts afterwards upon our Or$g a n$ of Senfation.
52. If the coloured Object only had been confidered,
52. That it is the different Modification of the Rays of Light that carifes the different Senfation of Colours in x x. which generally is at reft, when it affects the Senfes, I doubt the manner of its acting upon the Medium would never have been difcovered, and confequently we fhould never have known diftinctly what Colour confifts in. But if we oblerve, that fuch Bodies are not to be perceived in the Dark; and that in order for them to appear coloured, it is neceffary for them to have fome Light, the Nature of which is to be refiected, when it meets with a Body which it cannot penetrate ; it is eafy to conclude, that it is the Light which acts upon our Organ of Senfation to make us perceive any Colour, and that the whole Action of the coloured Body confifts in giving it 1 fome Modification whbich it bad not before.
53. This

1. Some Modification which it had not before.) In order to explain the Nature of Colours we muft obferve,
(I.) That it is found by Experience, that the Rays of Light are compounded of Particles different from one another : that is, which are (as is highly probable) fome larger and fome fmaller.
(2.) That a Ray, fuch as FE, falling upon a refracting Superficies in a dark Room, is not Tab. IV. refracted whole to L, but Fig. 5. as it were fplit into a great many fmaller Rays, fome of which are refracted to L , others of them to fome other Points betwixt L and G : That is, (as is very probable likewife) thofe Particles of Light which are fmalleft,
are the eafieft of all, and the moft turned out of a ftraight Line towards L, by the Action of the refracting Superficies; and the reft of them, according as they exceed each other in Bignefs, are more difficultly, and lefs turned out of a right Line, to the Points betwixt G and L.
(3.) Thofe Particles of Light which are moft refracted, make a fmall Ray of a Violet Colour; that is (as is very likely) the finalleft Particles of Light, feparated from the relt in this manner, excite the Shorteft Vibrations in the Tunica Retina, to be propagated from thence along the folid Fibres of the optick Nerves into the Brain, there to excite the Senfation of Violet Colour, the darkeft and the fainteft of all Colours. And thofe Particles which

Chap. 27. of Natural Philosophy.

53. This being fuppofed, there cannot be an eafier Way to come at the certain Knowledge of the Nature of Colours. For fince Light is nothing elfe but a particular Motion of the fmall Globules of the fecond Element, or at leaft a Difpofition to a particular Sort of Motion; nothing more is requifite for the underftanding of Colours, but only to examine the different Modifications which this Motion is capable of, and to find out what there is in the Bodies which we call coloured, to caufe thefe Modifications. Now the firft Thing which offers it felf, and which is the moft fimple Modification, is this, viz. That this Motion cannot but be weak, if all the
are refracted leaft, they make a friall Ray of a red Colour; that is, the biggelt Particles of Light, excite the longeft Vibrations in the Tunica Retina, in order to raife the Senfation of a red Colour, the brigheft of all Colours; and the other Particles are alfo every one feparated into fmall Rays, according to their Biguefs and Refrangibility, in order to excite intermediate Vibrations, which raife the Senfations of intermediate Colours. Much in the fame manner, as the Vibrations of Air, according to their different Bigneffes, caufe Senfations of different Sounds.
(4.) The Colours therefore of thofe fmall Rays, fince they are not accidental Modifications of them, but connate, original, and neceffary Properties of them, conffiting (as is highly probable) in the different Magnitudes of them, are permanent and unchangeable; that is, fuch as cannot be altered by any fuurure Refraction, Reflexion, or any other Modification.
(5.) As the Rays of different Colours begin in this manner to be feparated by the fingle Refraction of cue Supericies ; fo that Separation is much more compleated (10 as vexy eafily to be perceived by our Senfes) by that double Refraction (the Firft being increafed by the Second) which is made in the two Sides of a Triangular-Gla/s Prifm, (the Phrnomena of which are fully explained in the Notes on Ar:, 69 . below) and in the double Refraction made in the Superficies of Glaffes of other Figures, according as their Superícies are furcher from being parallel to each orher, fuch as the Objeft, Glafies of Telefoopes, drc.
(and this is the Reafon why they cannot be made perfect, viz. becaule of the Separation of the coloured Rays. See the Notes on Chap. xxxiii. Art. 28.)
(6.) As the Rays of different Colours are feparated by the Refractions of Prifins, and other thick Bodies, fo are they likewife feparated in another manner, in very thin Plates of any tranfparent Matter. For all Plates, which are thinner than a certain determinate Thicknefs, tranfmit the Rays of all Colours, and reflect none; but as their Thicknefs increafes in an Arithmetical Progreffion, they begin to reflect, firf, Kays that are intirely Blue; then Green, Yellow, Red, in order; and again, Blue, Green, Yellow, Red; but more and more faint and mixed; till at laft, when they come to a certain Thicknefs, they reflect the Rays of all Colvurs throughly mixed together, juft as they fell upon them, and thefe make White. And in that Part of the thin Plate where it reflects any Colour, for Inftance, Blue, it always tranfmits the contrary Colour, viz. Red, or Yellow : For the Truch of all which Phænomena, found out by numberlefs Experiments, and for the Calculation of what Thicknefs the Plate ought to be, to reflect particular Colours, and for, the Reafuns why Plates of particular Thicknefles reflect particular Colours in this manner: See the eminent Sir Ifaac Neroten moft clearly difcourfing in his Opt. Book II,
(7.) All natural Bodies are made up of very thin tranfparent fmall Plates; which, if they be fo regularly difpofed, with regard to each other, that there is no Reflexions
54. That the Roughnefs of the Superficies of a Body does alone modify the Action of
\qquad

 .

Rays of Light which fall upon an Object in a certain Order, and in a certain Qiantity, be not reflected back in the fame Order, nor in the fame Quantity towards one determinate Place of the Medium where the Eye is fixed: And we are fure, that this muft neceffarily happen, if the very fmall Particles of the illuminated Body are fo difpofed, as to make a rough and uneven Superficies; for then the Rays which come as it were parallel from the luminous Body, fall upon fuch a Superficies with all forts of Obliquities, and therefore are fcattered and reflected all Ways; and this is the Reafon why the Eye does not receive the Light with its full Force; but only a certain frmall Number of Rays are determined by this Superficies to come to the Place where the Eye is fixed; and hence we may conclude, that there is fome particular Colour which conlifts only in the Rougboness of the Surface of the coloured Body, and wbich gives no otber Modification to the Light, but only this, that it reffects it all ways indifferently in the fame manner as it recived it.
54. V What
54. Now as this is the leaft.Modification of Light that tras Nature of Fr Vkiteness coxafifs ic. can be; fo the Body which caufes it ought to refemble the luminous Body as much as poffible, that is, it ought to excite in us the Senfation of Whitenefs, which comes the neareft to Light of any Colour. And this is confirmed by Experience; for the white Colour of Eftamps Sand is found ro confift in this, that every Grain does thus reflect any Ray of Light all Ways. For when we look upon any of the Grains with a Microfoope, they have no Colour at all, but are tranfparent, like frnall Pieces of Chryttal of all Shapes, or like little Diamonds which af-

[^56]are made up of fmall Plates, the moft of which are of fome intermediate Thicknefs, are therefore Blae, Green, Yellow, or Red, viz. by reAlecting not all the Rays of that Colour, but more of thofe than of any wher Colours, the greateft Part of which other, they either fuffocate, and by intercepting them, extinguifh them quite, or elfe they tranfmit them; whence it is, that fome Liquors (for Inftance, an Infufion of L.ignum Nephriticum) appeared Red or Yellow by a reflected Light, and Blue by a tranfmitted Light; and Leaf-Gold appears Yellow when looked upon, but Green or Blue when looked through.

Chap. 27. of Natural Philosophy*

ford fuch a Paffage to the Light, that they refleot it all

 Ways in the fame manner as they received it.55. We may further conjecture, nay, we may be affured, that the Effence of Whitenefs confifis in notbing elfe but the Rougbuefs of the white Body, if we confider, that cysfocient to we cannot make fome Bodies roush, but they will alfo ness. become wbite at the fame Time, nor take away their Rougbruefs, but we muft likewife take away their Whbitenefs. Thus Goldfmiths make Silver white, by putting it firfe into the Fire, to take off all the Drofs and Dirt which foils it; and then dipping it in boyling Water, into which thicy caft a certain Quantity of Tartar and commons Salt (which are corrofive Bodies, and proper to make the Superficies of Silver rough and uneven.) And to take off the Whitenefs, they do nothing more but rub the Silver with what they call a Blood-ftone, which is very hard and fmooth; which by preffing upon the Part it is applied to, muft neceffarily deprefs the Parts which ftick up, and raife the Parts which fink in, that is, take off the Roughnefs.
56. As we take it for granted, that a white Body does not abforb any of the Rays, but that its Superficies reflects them all Ways indifferently, it follows, that we cannot place the Eye any where, but that it will receive pretty near the fame Number of Rays as if it were placed any where elfe; and confequently the Body ought to appear white from what Side foever it is viexped. But the Cafe of plain polifhed Bodies, fuch as Looking-Glaffes, is different; for when they receive the parallel Rays of Light from one Side only, they can reflect them to the other Side only, where they may dazzle the Eye, but they will not reflect Rays to any other Part.
57. As Black is contrary to White, there is no doubt but that the Effence of Blacknefs confifts in the contrary to that of Whitene/s. Wherefore, as it is neceffary, in order for a Body to look White, that it fhould reflect the Light which falls upon it towards all Parts in the fame manner as it receives it, fo that there can be no Place, but that a fufficient Quantity of Rays muft affect our Eye : So likewife ought we to think, that in order to perceive Blacknefs, there muft come no Rays at all to the Eye; and confequently the Bodies which we call Black, and which appear fo to our Senfes, abforb all the Rays in fuch a manner, that they reflect none of them to make any Impreffion upon the Eye: And becaufe a Body cannot deftroy the Motion of another Body, but by gaining
it it felf, it is eafy to conceive, that the Parts of Black Bodies are very fine and broken, fo as to be eafily Jbaken.
s8.VThy a great many Bodies that are not Black: do yet appear fo.
58. And this is confirmed from hence. Firft, That Darknefs, that is, thofe Places where Bodies having no Light falling upon them, can reflect no Rays to the Eyes, I appears Black. Secondly, Shadows, or thofe Places, which, by rearon of the Interpofition of fome opake Body, do not receive the Rays of Light from the luminous Body, or receive but a few of them, appear Black. Laftly, A well-polifhed Body, which does receive a great many Rays of Light, but reflects them to the Side oppofite to us, appears Black.
59. Thefe Things being allowed, it will not feem frange, that Flame which is fo bright, thould convert White Wood into a Black Coal. For it is manifeft, that the Wood has loft a great many of its Particles, which ferved to nourifh the Flame; wherefore the greateft Part of the remaining ones are fo 2 difunited, and eafily fhaken, that they abforb almoft all the Light that falls upon them.

6o. That all the Parts rf a Coalare not Black.
61.That, $\mathrm{cx}-$ teris paribus, Black Bodies ouzht to soeigh lefs than VVhite.
60. I fay, the greateft Part only are difunited and eafy to be put in Motion, and not all of them; for it may happen, that the fineft Particles which are on the Outfide of the Coal, may be like Down to cover the more folid Parts, and fuch as are capable of reflecting a fufficient Quantity of Rays of Light: And thus we fee, that after the Fire has carried off all that it can confume of the Coal ; there yet remains a great many Parts which compofe the Cinder, which are pretty folid, for they appear of a whitifh Colour.

6I. Becaufe the Particles of Black Bodies are more difunited than thofe of White Bodies, it follows, that they contain lefs of their own proper Matter in the fame Bulk than thefe other. And becaufe the more a Body has of heavy Matter, the heavier ought it to weigh, therefore

[^57]are applied, of a Black Colour, becaufe the very fmall Particles of the Coal, the Number of which is very great, eafily cover over the groffer Particles of othe: Bodies. But this Opinion, concerning the Nature of Blacknefs, in general is very much confirmed from hence, viz. that Black Budies are fooner heated; and if wetted, grow fooner dry tian Whice, as is confirmed by certain Experiments. See Art. 62.

Chap. 27. of Natural Philosophy.

we ought to conclude, that ceteris paribus of two equal Bodies, the one Black, and the other Wbite, the latter ought to weigh more than the otber; Wherefore the Wood ought to weigh mere than the Coal; and a piece of White Marble more than a Piece of Black, of the fame Bignefs.
62. Having thus explained the Nature of White and Black, we fhall eafily underitand the Reafon why the Rays of the Sun collected by a Convex-Glars, will not burn at all, or burn with greater Difficulty White Bodies; but will eafily kiradle Black Bodies, though they be both combuftible. For it is cvident, that the White Body which reflects all the Rays that fall upon it, is not fhaked by them, and that the Black Body which abforbs and choaks all the Rays, therefore abforbs them becaufe it receives all their Motion'; by which Means it begins to grow hot, and at laft takes Fire.
63. Hence we fee the Reafon of a Fact which we Thould not know but by Experience; which is, that White Bodies weary the Sight, and Black ones refrefh it. For we cannot look upon White, but we muftreceive the Impreffion of a great Quantity of Rays, which fatigues the Sight, whereas we fee Black when no Rays come to us, which refrefhes it.
64. From all which it follows, that thofe Bodies are the whiteft which reflect all Ways, and with the fame Force, all the Light which falls upon them; and on the contrary, that thofe Bodies are the blackeft, which abforb the Light the molt that can be. Such we have reafon to believe black Velvet to be, becaufe the fmall Threads of Silk of which it is made, are like Briftles, and fo placed as to be as rough as poffible; wherefore it is the blackeft Thing in the World.
65. As to the Modifications of the Rays of Light, which excite in us the Senfation of other Colours; as Red, Yellow, and Blue, we ought to think that they confift in this, viz. that the fmall Globules of the fecond Element, which compofe the Rays that are reflected from all fuch Bodies, have not fo much Force or fo great a Difpofition to go on in a ftreight Line, as the Globules of the Rays which are reflected from white Bodics, and therefore inftead thereof, they are fome way turned about their own Centers; and fo part of the Force which they had be-fore to go on in a ftreight Line, is beftowed upon this Motion. Which may be juftified from hence, that we cannot conceive what other Alteration than this can hap- gular Glafs Prifm; and yet we fee, that by going through this Prifm, they are capable of exciting in us the Senfation of Red, Yellow, and Blue.

66. But

1. A triangular GlafsPrifm) Becaufe the Experiments of a triangular Prifm, are as it were the Touchfone by which every Hypothefis, and every Theory, concerning the Nature and Properties of. Colours, is to be examined and tried; I Chall not think it too much trouble briefly to enumerate here the principal Phænomena as they are explained by the famous Sir Ifaac Newton all along in his Opticks. I. Then, the Rays of Liọht tranfmitted through a Irifn, paint an Image upon the oppofite Wall, diftinguilhed into various Colours, the Chief of which are, Red, Yellow, Green, Blue, and Violet. 2. This Image is not round, but when the Angle of the Prifm is about 60 or 65 Degrees, five times as long as it is broad. 3. Thofe Rays which make a Yellow Colour, deviate more from a ftreight Line, than thofe which make a Red ; and thofe which make a green Colour, deviate more than thofe that make a Yellow, \& c. and thofe which make a violet Colour deviate moft of all. 4. If the Prifm, through which the Rays are tranfmitted, be fo turned about its Axis, that the Red, Yellow, Green, \&bc. Rays fall in order through a finall Hole upon another Prifm, about twelve Foot diftance, and be turned another Way; the Yellow, \&rc. Rays, though they fall with the fame Incidence upon the fecond Prifm as the Red do, yet thery will not be turned upon the fame Place as the Red, but will be carried further towards that Part, to which the Refraction is made. Further, if in the Place of the fecond Prifm they be received by a Glafs that is a little gibbous, the Yellow, Green, \&c. Rays, every one in their Order, will meet in a Focus fooner than the Red. 5. The Colours of the coloured Rays, well feparated, (the manner of doing which, you may fee in Nemet. Opt. p. 54, \&rc.) cannot be deftroyed, nor any Way altered by repeated Refractions. 6. The Colours of coloured Rays cannot be at all altered,
by paffing through a Place that is Light, nor by croffing each other; nor by the Confines of a Shadow ; nor by reflecting them from any natural Bodies in a Place dark every where elfe. 7. All the coloured Rays together, collected, either by feveral Prifms, or by a Convex or Concave-Glafs, make White ; but when feparated, after croffing each other, they all exhibit their own Colour. 8. If the Rays of the Sun, fall upon the inward Superficies of the Prifm, with the greateft Obliliquity that any of the Rays can be tranfmitted at, thofe that are reflected will be Violet, and thofe which are tranfmitted will be Red. 9. If there be two Prifins, the one filled with a red Liquor, and the other with a Blue; the two Prifms clapped together will be opake, though if they be both filled with a red or blue Liquor, they will be tranfparent when clapped together. 10.All natural Bodies, but elpecially White, when looked at through a Prifm, appear to be bordered on one Side with a red and yellow Colour, and on the other Side Side with a Violet and Blue. Ir. If two Prifms be fo placed, that the Red of the one, and the Purple of the other, be mixed on a fitted Piece of Paper, furrounded with Darknefs, there will be a pale Image; which if it be looked upon through a third Prifm at a due Diftance, will appear double, Red and Purple. 12 . So likewife, if two Sorts of Powder, the one perfectly Red, and the other perfectly Blue, be mixed together, and any fmall Body be dawbed thick with that Mixture, it will appear to the Eye through a Prifm, to have two Images, a red and a blue One.

Thefe are the moft general Phænomena of the Prifin; (to reckon up all the Particulars which are worth obferving, would be endlefs) from which it appears at firft Sight, that the Coiours cannot confift in the turning round of the Globules only, according to Cortes, nor in the Ob-

Chap.27. of Natural Philosophy:

66. But for the clearer undertanding hereof; let the Side BC of the Prifm $A B C$ be covered all over with Some of Be Body, except the Place DE, where there the Rays of fome opake Body, except the Place DE, where there Litybtpafis to be a Hole in the opake Body for fome of the Rays fing throughas FI, GL, coming from the Sun FG to pafs through; ${ }^{\text {Glafs } \text { Prijfm }}$. which, Fig.3.
liquity of the Pulfes of the xtherisl Matter, as Mr. Hook thought, Mi crog. Obfer. 9, nor in the Light being thick and rare or flower moved; as the famous Barrow conjectures, Lect. 12. towards the End. But thefe and all other Phænomena of Colours, are very eafily and clearly explained, by the true Theory of that incomparable Perfon fo often cited.

For Firft. The Rays of Light tranfmitted through a Prifm, paint an Image upon the oppofite Wall, difingnifhed into various Colours: Becaufe the coloured Rays are feparated by Refraction. Thus the blue Rays, for Irftance, marked with Tab. XXII. the prick'd Line, which Fig.I. Fig. 2. begin to be feparated in the Side $c a$ of the Prifm $a b c$ (and alfo in the firft Superficies of the Globe of Water $a b c$) from the reft by the firft Refraction in $d d$; are feparated fill more in $b c$, the other Side of the Prifm (and alfo in coming out of the Globe $a b c$) by a fecond Refraction towards
Fig. $4 \cdot$ the fame part in ee: But, on the centrary, in the plane Glafs abcf (and alfo in the Yrifm glo placed in another Situation, the blue Rays, which begin to be feparated from the reft in the firft Superficies in $d d$, go out parallel in the other Superficies, the Refraction being made the contrary Way, that is, they are mixed again with the Colours of the other Rays.

Secondly. This Imare is not round, but about five times as long as it is broad: Becaule fome Rays are more refracted than others, and therefore they reprefent a great many Images of the Sun like one Image drawn into a great Length.

Thirdly and Fourthly. Thofe Rays wobich make a yellow Colont, dicuiate more from a fircight Line, than thofe which make a Red, and thofe mhich make a grecn Colour, deviate more than thofe that make a Yello:v, \&c. and tho fe pohich make a violet Coeur, deviate moft of all: Aud furt
ther, if the Prifm through which the Rays are transmitted, be fo turned abuut its Axis, that the Red, Yellow; Green, \&ic. Rays, fall in order thro 0° a fmall Hole uepon another Prifmabout twolve Foot diffance, and be turned another Way; the Yellow, \&xc. Rays, though they fall with the fame Incidence upon the Second Prifm as the Red do, yei they will not be turned upon the fame Place as the Red, but woill be carried further tomards that Part, to which the Refraction is made. Further, if in the Place of the fecond Prijm, they be received bs a Glafs that is a little gibbous, the rellom, Green, \&ic. Rays, every one in their order, waill meet in a Focus Sooner than the Red: Becaufe tha YellowRays are more refracted than the Red, and the Green than the Yellow, and the Blue and Violet moft of all.

Fifthly and Sixthly. The Colorzs of the coloured Rays mell Separated cannot be deffroyed, nor any Way altered, by repeated Refractions, nor by pafing throngth a light Place, nor by crofing each other, nor by the Confines of a Shadow, nor by reflecting them from any natural Bodies, in a Place dark every where clfe: Becaufe their Colours are not Modifications arifing from Refraction, but immutable Properties belonging to their Nature.
Seventhly. All the coloured Rays together, collected either by Jeveral Prijms, or by a convex or concave Glafs, make White; but when Separated after crofling each other, they all cxibibit their own Colons: For as the Ray, before it was divided into feveral Parts by Refraction, was White; fo by thofe Parts being mixed together again, it becomes White again; and the coloured Rays, when they unite, do not deftroy one another, but are only mixed tegether. And hence it is, that Red, Yellow, Green, Blue, and Violet Powders mixed torecher in a certain Proportion, are fonmewhat Whitifh; that is, are of fuch a Colour as aria fes from a Mixpura of Whire and ed in fuch a manner, that the Ray FI will tend towards M , and from thence to N , and GL will go to O , and from thence to P. Whence it is to be obferved, that FI, GL are therefore turned out of the Way in this manner, becaule the fmall Globules at their entring into the Glafs, find an eafier Paffage this Way, that is towards the right Hand, than towards the Left. Thus for inftance; Let STV be one of thefe Globules, we muft

Black, and would be entirely White, if fome of the Rays were not abforbed: So likewife if a round piece of Paper be painced with all thofe Colours diftinct from each other, and in a certain Proportion, and then turned very quick round upon its Center, that by the Swiftnefs of the Motion, all the Species of Colours may be mixed together in the Eye; the particular Colours will immediately vanifh, and the Paper will look all of one Colour, which is a Medium betwixt White and Black.

Eighthly. If the Rays of the Surt fall upon the inwoard Superficics of the Prifm, with the greateft Obliguity that any of the Rays can be tranfmitted at, thofe which are reflected woill be Violet, and thofe wohich are tranfmitted, mill be Red: Becaufe the Rays, fince they were coloured before they were refracted at all, and the more they are capable of being refracted, the fooner are they reflected alfo; are feparated in this manner.

Ninthly. If there be twoo Prifms, the one filled with a Red Liguor, and the other with a Blue, the two Prifms clapped together, will be opake, tho' if they be both filled with a Red or a Blue Liquor, they will be tranfparent when clapped together: Becaufe one of them tranfmit none but Red Rays, and the other none but Blue, therefore when put together, they cantranfmit none at all.

Tenthly. All natural Bodies, but efpecially white ones, when looked at through a Prifm, appear to be bordered on one Side, with a Red and Yelbowo Colour, and on the other Side with a Blue and Violet. Becaufe thofe Borders are the Excremities of whole Images, which the Rays of every Species, according as they are more o- lefs refracted, exhibit at a greater or lefs diftance from the true Place of the Object,

Eleventhly and Twelfthly. If t two Prifms be So placed, that the Red of the one, and the Purple of the others be mixed on a Piece of Paper fitted and furroundied with Darknefs; there woill be a pale Image, which if it be looked upon through a third Prifm, at a due Diftance, woill appear double, Red and Purple: So likewife, if two Sorts of Powder, the one per fecily Red, and the other perfecily Blue, be mixed together, and any fmall Body be dawbed thick with that Mixture, it will appear to the Eye, through a Prifm, to have two Images, a Red and a Blue one: Becaufe the Red Rays, and the Purple or Blue ones are feparated by an unequal Refraction.

Moreover, thirteenthly. If the Rays which are tranfmitted tbrough a gibbous Glafs, be received utpon a Piece of Paper before they meet in the Focus, the Confines of Light and Shadow will Seem tinged with a red Colour, but if bcyond the Focus with a Blue: Becaufe in the former Cafe, the Red Rays, which are fomewhat lefs refracted, are uppermoft; but after croffing in the Focus, the Blue are fo.

Fourteenthly. If the Rays that go through one half of the Pupil be intcrcepted by any opake Body put clofe to the Eyc, the Extremities of the Objects beyond, woill appear tinged woith Colours, as they do through a Prifm, but not So vivid: Becaufe the Rays which are tranfmitted through the other part of the Pupil, are feparared into Colours by Refraction, and will not be diluted by the Mixture of the intercepted Rays, which would have been refracted the contrary way : And hence it is, that a Body which looked at through two Holes in a Piece of Paper, appears double, appears tinged with Colours alfo.

Chap, 27: of Natural Philosophy.

think that the Superficies $A B$ determines it to move towards S, rather than towards V, and confequently to turn about its Center in the order of the Letters STV, which it will continue to do the whole Length of the Line IM. And becaufe when it is come to M, where it undergoes a Refraction towards the right Hand; this is a Reafon why it chould be turned about again in like manner; therefore it mult be acknowledged, that the fmall Globules which come out of the Glafs towards N , are fo modified, that beffdes the Difpofition they have to move ftreight along, they have a Difpofition alfo to turn about their own Centers.
67. What was affirmed of the Globules of the Ray FIMN is to be underfood alro of thofe of the Ray GLOP and of all the other intermediate Rays. But after the fecond Refraction, which is made at the Surface BC, we find on the one Hand, that the fmall Globules of the Ray MN are turned about in the fame manner as they were at firf, from a new Caufe; for the Shadow on the Side D flackens the Motion of the Globule M on the fame Side; and the Rays which are between IMN and LOP being ftronger than the other, prefs upon the Side Q of the fame Globule, and becaufe they move the fame Way as it turns, they quickens its Motion on this Side: And on the other Hand, we are affured, that the Globules of the Ray GLOP, have the Rotation which they had acquired from thefe two Refractions hindred by Two Things. Firft, From the Shadow which hinders them on that Side on which they were moft ftrongly impelled, and retards their Motion. And, Secondly, Becaufe they are impelled on the other Side, by Rays that are ftronger, and which imprefs a Motion upon them, contrary to that of their Rotation.
68. Having thus confidered the feveral Alterations, and the Reafons of thofe Alterations which may happen to the Rays of Light in their Way to the opake Body NP; we find, that the Globules which fall near N are turned round with a greater Force, than that with which they are moved on in a ftraight Line; and on the contrary, that the Globules of the Rays which fall near P, move on in a ftraight Line, with a greater Force than that with whichs they turn round, their Centres. And, Laftly, That there intermediate Rays, about X, bave pretty near the fame Force to turn round, as to move fraight along. But by Experience we find, that we fee Red in N, Blue in P, Yellow in X. Orange between N and X , and $G r e n$ between X and P ;
67. That the Shadow carsfes divers Modifications ins thefe Rays. Tab. V: Fig. 3°
68. What the Modifications of thofe Rays are which caufe Red and Yellow, and Bince. Tab. V. Fig. 3°
whence it appears what the particular Difpofitions of the Globules which compofe the Rays of Light are, to excite in us there Senfations.
69. What the 69. Now there are two Things in the Objects I which Colours of coloured Bodies confift in. we call coloured, which may caufe the fame Modifications in the Light, as thofe acquired in paffing through a Prijm. For, Firtt, Their Particles may be fo tranfparent, that the Rays of Light may penetrate a little Way into them, and be refracted, before they are reflected: Secondly, (and which may produce the fame Effect, and be the Caufe of the Colours of different Objects) Their Particles may be fo fmall and uneven, that the Globules of the Rays of Light which fall upon them, may communicate fome of their Motion to them, and by that Means they may be turned round and reflected back, in the fame manner as a Ball thrown with great Force upon the Grafs, is ftopped a little by the Spires and turned round.
70. That co-
70. Neither can it be doubted, but that lome of the lanre 1 Bodies
are in fome meafure
zranfparent. Particles of coloured Bodies are really tranfparent, as may be feen by the Help of a Microf cope, in all kinds of Sand, Flint-ftone, Marble, Sugar, Silk, Wool, Hair, Herbs, and an infinite number of other Bodies.
7r. That the 71. And that the Particles are very fmall and broken,

Surfaces of colourted Bodies is made rough by coLouriugs them.

1
72. That the Particles of black Bodies are more broRers than thofe of any other soloured Bodies. is evident, not only from hence, that coloured Bodies appear coloured when viewed all Ways, but is further confirmed from the manner in which Colours are made by the Dyers. For, fince Brafil-Wood, Indian-Wóod, Indico, Yel-low-Weed, ©.c. will not tincture any Thing with a red, violet; blue, yellow, \&oc. Colour, unlefs chere be fome Allum mixed with them, we mult conclude, that this penetrating corrofive Body infinuates itfelf into the Pores of the Cloth, and dilates them; whereby there is Room made for the Water to enter tinctured with the feveral Colours, which fink into the Cloth in fuch a manner, as to leave rome on the Superficies, which caufes a kind of Roughnefs, and makes it capable of all the different Modifications of Light.
72. After what has been faid concerning Dying, it is neceffary to make one particular Obfervation about Black; and that is, that becaufe the Roughnels, in which this Colour confifts, muft be the greateft that can be, to extinguinh all the Rays; therefore in dying Cloth of a Black Colour, Allum and Nut-galls are not fufficient alone;

[^58]
Chap. 27. of Natural Philosophy.

but there mult be Vitriol inftead of Allum, which is more corrofive than Allum; and further, to make the Vitriol corrode the more, they put the Cloths to be died into the Copper, and leave them for fome time in the boiling Liquor; whereas in dying of other Colours, they only dip the Cloth feveral times into the Liquor, which is but juft warm.
73. Since the Particles of black Bodies are the moft 73 . Why uneven, it is eafy to imagine, that Cloths and other Stuffs black Cloth of this Colour muft tear and wear fooner than thofe of thears focher any other Colour.
74. Further, if we confider, that the darkeft Colours require that the Particles fhould be the fmalleft that can be; it is evident, that we may eafily make a light Piece of Cloth of a dark Colour, becaufe it requires only to have its Superficies made rough; but becaule it is very difficult to make it fmooth again; therefore Cloth of a dark Colour, can very hardly be died of a Lighter.
75. Now, when I fpeak of the Particles of coloured Bodies, I mean only the very fmallett of all; many Hundreds of which may be united together differently, in or- fame Colour der to compofe grofier Parts which may be of very dif- Should haze ferent Figures, in the fame manner as different Buildings the fame may be formed of Bricks, which are all alike. Thus we know, that coloured Bodies act upon the Eyes by their fmal left Particles, and upon the Tongue by thofe which are larger, and compofed of the other; whence we conclude, that Things of the fame Colour have not neceffarily the fame Tafte.
76. Since there are two Sorts of Particles in the fame Body, this Thows us, that if we make any Alteration in the fmaller Sort, the Colour muft be changed likewife. And fo we experience it in Herbs bruifed in a Mortar ; and in Colours which Painters grind upon a Stone, fuch as Vermilion and Orpiment. But if the Body be fuch, that the fmalleft Particles of it cannot be altered, neither can the Colour be changed; as we fee in fome Paints, which are not fo eafy to be altered as thofe mentioned; efpecially as Herbs, whole Particles have before a proper Motion of their own, as being in fome meafure liquid, which helps to dafh them againft each other, and to feparate them into fmaller Particles, than they would ow therwife be.
77. How a sobite Body ought to appear, which receives Rays already modified.
78. A curicus: Experimont.
77. From what has been faid concerning coloured Bodies, and particularly concerning a white Body; we may infer, that if there fall no other Rays of Light upon a white Body, but thofe that are caft upon it by another Body which has already modified them, the Rays will not be altered at all by the white Body, but reflected back to the Eye with the fame Modification ; fo that the Body inftead of appearing White, will appear of the Colour of that Body from which it received the Rays.
78. We may be convinced of this by a very curious Experiment, which it is not very difficult to make. The Way of doing it is this. Let all the Windows of the Room be fhut up clofe, except a very fmall Hole, through which the Rays reflected from the Objects on the outfide, may enter in; then let the Rays fall upon a white Cloth, or any other white Body, and it is pleafant to fee the different Colours of the Objects which are painted upon it.
79. This Experiment perhaps may raife a Difficulty in the Minds of fome, who may imagine, that different Rays, and differently modified, paffing through the fame Hole, mult hinder one another, and confound their refpective Actions: But it will not be hard to get clear of this Difficulty, if they confider in the firt Place, the vaft number of Pores that there is in the leaft Quantity of Air, or of any other tranfparent Body, which afford a Paffage for an infinite number of Rays, if I may fo fpeak, without difturbing one another. But that which is principally to be confidered, and which takes away the Difficulty intirely, is, that the Light, or the Cor lours, does not confirt fo much in actual Motion, as in a Tendency to Mocion, or a Preffure. Now it is eafy to apprehend, that an infinite number of thefe fort of Actions, different from each other, may be tranfmitted through the fame Point without confounding one ano-

Tab. V; fig. 4: ther. For inftance, fuppofe a Force equal to a hundred Pound Weight, applied to the Point A, of the ftraight Line $A B$, pufhing it towards B, where we fuppofe alfo, that there is a Body able to refift this Force. The Line AB could not move at all according to the Direction of $A B$, much lefs can it bend towards C or D, becaufe it is ftraight; but the leaft Force that can be, will bend it towards any Side whatfoever. Thus if any Force in C pufhes it by E towards D, if it be but the Force of one Pound, it will bend it towards D: But if we fuppore enother Force in D which can refift that of a Pound,
this will hinder the Line $A B$ from bending; fo that the Force which is at A, fhall tranfmit its Action whole and - entire to B, without being difturbed by the Force which is at C : and the Force which is at C fhall tranfmit its Action to D , without the leaft hindring the Continuance of the Action along AB . So likewife we may imagine a Force at F equal to five Pounds acting upon a Body at G. The fame Point E therefore may ferve to tranfmit as many Actions as we will, without at all confounding them.
80. After what I have already faid: I have but one 80 . That $c_{0}-$ Thing more to remark concerning the Diftinction that is ufually made of Colours; viz. that fome of them are $\begin{gathered}\text { guighthed, } \\ \text { gitinto }\end{gathered}$ true or real Colours, fuch as thofe of Tapiftry, and o- true and thers falfe or feeming Colours only, fuch as thofe feen falfe, real through a Glafs Prifm. But I don't fee any Foundation for colours. this Diftinction, becaufe the Reality is juft the fame in each of them : For if the Senfation of Colour which we have upon viewing a Piece of Tapiftry be real; that which we have in looking through a Prifm is as real; for the Prifm is as real a Thing as the Tapiftry. And indeed it is the fame Light which caufes us to perceive the Colours through the Prifm, as caufes us to perceive the other.
81. If iny one, in order to fupport that Diftinction of Colours which we have juft now rejected, replies; that there is at leaft fome falfe Appearance in looking through a Prifm, becaufe we apply the Colours that we fee, to Objects where they are not: To this I anfwer, that the Fault is not in our Sight, but only in the Judgement which we make afterwards. And if this were fufficient to conclude, that thefe are falfe Colours; we may for the fame Reafon fay, that all other Colours are falfe likewife, becaufe we equally falfely refer the Senfations which are caufed in us by them, to the coloured Objects.
82. Nor have they fucceeded any better, who owning all Colours to be equally real, have yet diftinguilhed them into fixed and fying; giving the Name fixed to thofe which the other called real; and the Name flying to thofe which the other called falfe: For if the Eye continue never fo long applied to the Prifin, and during that Time the Light intervene in the fame manner, we fhall always fee the fame Colours; fo that thefe are no lefs fixed and durable, than thofe of a Piece of Tapiftry.
83. That there is no Differerice at all betmeen the one and the other.
83. All the Difference that is to be found in the Ob jects that raife in us any Senfation of Colour, is only this; that fome of them, fuch as the Prijm, feem to require that the Eye fhould be fixed in a certain Place, out of which there is nothing to be feen; whereas others, fuch as Tapiftry appear of the fame Colour, which way fo ever they are looked upon. However, if we confider the Matter a little more clofely, it is certain, that the Prifm, and the Tapiftry, agree in this; that the fame Parts of the Tapiftry which rellect the Light to the Eye when it is in any certain Place, does not reflect the fame to it, when it is removed ever fo little out of that Place; and the only Reafon why we perceive the fame Colour when we change our Place is, becaufe inftead of there Parts, thofe Parts that are next to them, and which are exactly like them, reflect the Light in the fame manner. If therefore the Eye were fixed in one certain Pofition, from whence it fhould fee fome particular Places of the Tapittry of fome particular Colours, and God fhould annihilate all the other Parts of the Tapiftry, fo that they could not at all reflect any Light; in the Place where the Eye is, it would continue to fee the fame Colours, but if it fhould change its Place, they would immediately difappear.
84. of the 84. This being well underftood, there will be no great 2.

Nature of changeable Colotiys. Difficulty in explaining thofe Colours which we call Cbangeable, fuch as we obferve in a Duck's Neck, or in a Pidgeon, or in a Peacock's Tail : For it is eafie to conceive, that the Parts of thefe Bodies are placed in fuch order, that thofe of them which are proper to modify the Light after one particular manner, are difpofed to refleet it to one certain Place; and thofe that modify it in another manner, reflect it to another Place. Thus, if the Eye be in the Place where the Rays come, which caufe the Senfation of Red in us, then the Object appears Red, and if it be placed where the Rays, which caufe Yellow are reffected, the Object appears Yellow.
85. ACom pariforz of chanycable Colour's with Things made by Art:
85. This is confirmed from hence; that Workmen have found out a Way to make Stuffs of a changeable Colour, by making the Warp of a Light Colour, and the Striking of a Colour not quite fo Light : But what moft refembles the Objects to which we afrribe thefe changeable Colours, are thofe channell'd Tables which reprefent different Sorts of Things, according as they are viewed from different Places: For one of thefe Tables, when

Chap. 27. of Natural Philosophy.

it is looked directly upon, reprefents a Cefar's Face; when looked upon on the Right Side, it reprefents a Cat, and on the J eft Side a Skeleton. Thus, as they are different Parts of the Table which make thefe different Reprefentations, fo likewife are they different Parts of the Pidgeon which caufe us to fee different Colours.
86. If after what has been faid concerning the Nature and Properties of Light and Colours, there remains any further Difficulty, it will be folved afterwards, when we have particularly examined the Nature of Vifiun: And this is what I fhall proceed to; which I the more readily do, becaufe the following Parts of this Treatife of Natural Philofophy, depend, in fome meafure, upon Obfervations made by the Help thereof, fo that it is neceffary to know all the Circumftances, of this Sort of Senfation, which is the moft wonderful of any that we are poffeffed of : I fhall begin with a Defcription of the Eye, and to avoid Tedioufnefs, I fhall mention only thofe Things which belong particularly to this Subject.

C H A P. XXVIII. A Defoription of the EXE.

WHILST the Eye is inclofed in the Head of any Animal, the Bones which furround it, hinder us from feeing what Figure it is of; but when it is taken out, we find it is round, and fuch as is reprefented in the Figure $\mathrm{ABCDEF} . \mathrm{FABC}$ is the fore-part of it, or that which fticks out; CDEF that part which is inclofed in the hollow Bone of the Head.
2. AB is a tranfparent Part of that particular Coat of the Eye, which is called the Tunica Cornea.
3. BCDEFA is the reft of this Covering, the Parts of which, that are next to A and B, are called the White of the Eye.
4. AILB is the Tunica Uvea, in which there is is a Hole IL, which is called the Pupil.
5. MN, MN, are certain black Filaments, which are called the Ciliary Ligaments; there is a certain foft and tranfparent Body called the Chryfalline Hunzour which is furpended upon them.
6. The Space QQQ is filled with a tranfparent Liquor, which is very fluid like Water, and for that Reafon is called
I. Of the Figure of the Eye. Tab. v. Fig. 5 . the Aqueous Hunvonr:
72. The USe of the $M u s f$ cles of the Eye. vered, becaufe they are not of any particular Ufe in explaining the Nature of Vifion; but I muft not omit to take notice, that the Superficies of thefe Coats are all Black in thofe Places which are over-againft the Bottom of the Eye.
11. Of the Mivcles of the Eye.
7. NONP is a tranfparent Body of the Figure of a Lens, a little more convex on the Superficies NPN than on NON, which, becaufe it is a little hard, is called the Cbryftalline Humour.
8. The reft of the Cavity of the Eye RRR is filled with a flimy Matter, almoft like the White of an Egg, which is more tranfparent than either the Aqueous or the Cryftalline Humour, and is of middle Confiftency betwixt them, (for it can eafier be compreffed than the Chryftalline, and yet it is not fo fluid as the Aqueous Humour;) and this is called the Vitreous Humour.
9. DEGH is a Part of the Optick Nerve, whofe Capillaments TS, beginning in the Brain, and reaching to the Eye, form at the Bottom of it a curious Piece of Network which Phyficians call the Retina.
10. I purpofely forbear mentioning the Number and Names of the feveral Coats with which the Eye is co-
II. The whole Body of the Eye is encompaffed with fix Mufcles, four of which are called Right, and the other two Oblique. Every Nerve, which is thought to be the Original of the feveral Right Mufcles, is derived immediately from the Brain, from whence it comes along through a little Hole in the Bone of the Head, and divides it felf into thefe Mufcles, every one of which is inferted into fome Part of the Coat of the Eye, fuch as that here marked F, in fuch a manner, that of thefe four Mufcles, the Firft is above, the Second below, and the other Two on each Side this Coat. And as the oblique Mufcles have their Origin alfo in the Brain, their Nerves are bent round, fo that they feem to come from that Corner of the Eye which is next the Ear, and one of them fpreads over the Top, and the other along the Bottom of the Eye, and fo crofs the four right Mufcles, and then are inferted into the Bone of the Nofe.
12. There is no one Mufcle in the whole Body, but what is fometimes filled with a certain Liquid like very thin and fine Air, which comes to it from the Brain along the Nerve which belongs to it. This Liquid is what Phyficians call the Animal Spirits, which cannot fwell the Mufcle without fhortning it or leffening the Length betwixt
twixt the Origin and the Place into which it is inferted. Thus when the right Mufcle which is above, is fllled with Spirits, the Eye muft neceffarily be lifted up, and when the Three other right Mufcles are filled in their Turns, they ferve either to turn the Eye downwards, or to the Right, or to the Left Side. But what is very remarkable here, is, that if thefe four Mufcles be filled all at the fame time, they will alter the Figure of the Eyc a little, and make it flatter than it was before. But as to the oblique Mufcles, I am not of the fame Opinion with thofe Phyficians, who fay, that they ferve to turn the Eye round like a Pulley: I rather think, that they are filled both together with Spirits, and by that Means fhortned, and fo they prefs upon the Eye and alter its Figure, in fuch a manner, that the fore-part of it is made more gibbous, and the hinder-part funk a little deeper in, and this makes a greater Diftance between the Chryftalline Humour and the Retina.
13. To thefe Alterations of the Eye we may add, that ${ }^{\text {rys. }}$. That iths the Pupil is capable of dilating and contracting it felf. puppil is caAnd thus we find, that it dilates it felf, when we are in dilated. Places where there is but a little. Light, and when we try to look at a great Diftance; and on the other Hand, it contracts it felf when we are in a very light Place, or look at an Object very near.
14. Laftly, we may obferve, that if the two Optick 14.Of the Nerves be purfued to the Origin of them, we fhall find, Nerves. that after they come into the Skull, they approach nearer and nearer to each other, till at laft their Coats are mixed together, and they become one and the fame, but afterwards they are feparated again, and then enter into the very Subftance of the Brain, after which we fee them no more. Wherefore to add any Thing further about this Matter, would have no Similitude of Truth; unlefs it were to account for certain Phænomena which otherwife could not poffibly be explained.

C H A P. XXIX.

How Vifion is commonly explained.

> 8. What is meant by $\mathrm{Vi}-$ fion, and that Ariftotle has faid nothing slowt is.

ARISTOTLE has faid nothing in particular as to the manner how Vifion is performed; for though the Title of the Seventh Chapter of his Second Book of the Soul, concerning Vifion, feems to promife treating of this Matter fully; yet he fays nothing more of it, but only this; that the Object muft act upon the Medium in order to have its Action tranfmitted to the Organ of Sight. It is true indeed, that he fays further in the Twelfth Chapter of the fame Book; that in every Senfation we receive the Images of the Things, but not the Matter, in the fame manner as Wax receives the Impreffion of the Seal, without retaining any part of the Seal it felf: but here likewife, what he fays is as general and loofe, as what he faid in the forecited Place; and the Comparifon which he makes, does not at all fhow us how fo great a Number of Parts of which the Object is compofed, can be diftinctly perceived at the fame Time, nor how we can know the Situation, Diftance, Bigners, Figure, Number, Motion or Reft of the Objects which are in our View.
2. The Opiniour of the Ariftotelians abozit Vifiono
2. The Followers of Arifotle faw plainly, that he fell very much fhort of teaching what one would wifh to know upon this Subject; and this has put them upon trying to find how his Doctrine was to be underftood. Thus taking the Word Image, which he fpeaks of in the forecited Place, in the literal Senfe; they affirm, that the vifible Object impreffes an Image upon the Air which furrounds it ; that this Image impreffes another a little lefs upon the Air beyond it, and this impreffes a Third, a little lefs ftill, and fo they go on till there is one impreffed on the Chryftalline Humour of the Eye, which they pretend is the principal Organ of Vifion, or that Part of the Body which the Soul makes immediate ufe of to caufe Senfation. Thefe are what they call intentional Inzages or Species; and in order to explain their Manner of Production, they fay, that the Objects caufe them in the fame manner, as our own Image is produced in a Looking-Glafs.

Chap. 29. of Natural Philosophy:

3. From what has been already faid, it fufficiently appears, that I agree with Ariffotle himfelf; but I can by no Means come in with his Followers in this Thing of their intentional Species, the Nature of which feems to me inconceivable, and has all along put their Underftandings upon the Rack. And it is a mere Sophifm to pretend to eftablifh their Opinion upon the Inftance of a LookingGlafs, becaufe reflected Images are harder to be explained than direct.
4. There is no need of mentioning all the Absurdities confequent hereupon, in order to flow that there is no fuch Thing as intentional Species. It hall fuffice only to observe; that if They are diminifhed in the manner they fay, it will follow, that when an Object is feen at ten Yards diftance, the Species of it is only as little again, as when it is feed at five Yards diftance; that is, an Object of fix Foot in Length in the one Cafe, will appear of three Foot in Length in the other Cafe. Wherefore if the Eye and the Object be within five Yards of each other, it can receive but a very fall Part of fuck a Species, and confequently we could fee but a very fall Part of the Object; but this is contrary to all Experience, for we can fee fuch an Object intire at fuch a Diftance, nay, at a much left. If they fay, that there Species diminifh otherwife when the Eye is nearer to them, than when it is further off; they mut allow then, that a Thing inanimate, and which acts neceffarily, has however Underftanding enough to proportion its Action, fo as to perform the fame Thing at different Diftances. Which being abfurd, it follows, that the Foundation upon which their Species is eftablifhed, is abfurd alfo.
5. It is riot only without Reafon, but contrary to Reafol, to affirm, that Vifion is perfected in the Cbryftalline Humour, and that the Vitreous Humour behind it, is of cor med the the fame Use as the Quickfilver behind a Looking-Glafs, viz. to terminate the Action of the vifible Object: For doubrlefs, the Object ought to continue its Action taro' the Vitreous Humour, which being one of the molt tranfparent Things that we know of in the World, cannot reafonably be compared to Quickfilver, which is very opake. To this we may add, that fince the Chryftalline Humour is found in both Eyes, and two Species are formed by it at the fame Time, if That were the primcipal Organ of Vifion, it would follow; that we muft always fee the Object double, when we look upon it with both Eyes at once.
6. Neither is it performed in the Retina.
7. This laft Reafon fhows alfo how falfe the Opinion of fome Philofophers is, who affirm the Retina to be the principal Organ of VIJion.
7.That it is not performed in the Place, sobere the $O p$ tick Nerves meet.
8. As to the Opinion of thofe who contend that this Senfation arifes from hence, that the Action of the Object is carried to the Place where the Optick Nerves meet; this is confuted by the Experience of Anatomifts, who have found thefe Nerves feparated in the dead Bodies of fome Men, who, when they were alive, faw Things in the fame manner as others do.

C HAP. XXX.

Of the Pajfage of the Light through the Humours of the Eye.

1. Hows the ancient Philofophers came to be miftaken iupon this SubjeCt of $V i$ ion.
2. That it is fufficient to confider only Some fero of thofe many Rays which come from every Point of an Object. Tab. VI.
3.That fome of the Rays go to ine Bottom of the Eye without any Refraction at all.

IThink that moft of thofe who have endeavoured to explain the Nature of Vifion, have run into great Miftakes, principally from hence, becaure they attempted too many Things at a Time, and did not obferve any Method or Order: Their Miftake will be a Help to us, if, upon obferving, that Vifion is a Confequence of the Action of the Object upon both the external and internal Organs; we, in the firft Place, inquire, how the Rays of Ligbt, which are the Means by which any Objects are feen, are received by the Humours of the Eye.
2. Let us fuppofe, for Inftance, Z to be the Eye, and ABC the Object; there is no Doubt, but that every Point, that is, every the fmalleft vifible Part of this Object, fends forth Rays all Ways through the Air, to every Place where it can be feen; but becaufe thofe only which pals through the Pupil are of any ufe to caufe Vifion, we will examine thofe only which fall upon that Part of the Tunica Correa which anfwers directly to the Pupil: Thus, in order to examine the Action of the Point B, it is fufficient to confider fome few of the Rays which come from this Point, fuch as $B D$, BE, BF.
3. Now becaufe the Ray BD is perpendicular to the Superficies EDF, it will not be at all refracted in paffing out of the Air into the aqueous Humour, wherefore it will continue on in a ftraight Line to H , where falling again perpendicularly upon the Superficies of the Chryf-tal-

Chap. 30. of Natural Philosophy'

talline Humour, it muft go on ftill directly to M; and here falling again likewife perpendicularly upon the Superficies of the Vitreous Humour,' it muft go directly to the Point O in the Bottom of the Eye.
4. But the Ray BE not falling perpendicular upon the Superficies EDF, where it is to pafs out of Air into Water, it ought to be refracted, and to go towards the Perpendicular EP, and confequently it will tend to fome Point of the Superficies of the Chryftalline Humour, fuppofe G, which is fomewhat nearer H, than it would be without fuch Refraction: Again, the Ray EG likewife, not being perpendicular to the Superficies GHI, through which it is to pafs out of the Aqueous Humour into a denfer Medium, it ought to be refracted again, and go towards the Perpendicular GR, and confequently to arrive at fome Point of the Virreous Humour, as L , which is nearer to M than if there had been no Second Refraction: Laftly, Becaufe the Ray GL is alfo inclined to the Superficies LMN, through which it is to pafs from a denfe Medium to one that is much rarer, it muft be refracted, and go from the Perpendicular LT, the Pofition of which is fuch, you fee, that the Ray, by going from the Perpendicular, approaches towards the Ray BDO; and we may conceive it refracted in fuch a manner, that it fhall go to the fame Point that the Ray BDO went to, that is, to the Point O. So likewife if we confider the Ray BF, we thall find that the Refractions will carry it from F to I , and from I to N , and that at laft it will meet the other Two at O. And fince the Rays which fall betwixt BE and BF , are not quite fo much refracted as they themfelves are, it is evident, that they cannot do otherwife than meet all together in the fame Point O. Thus we fee, that the Point B acts upon the Bottom of the Eye, in the fame manner, as if the Pupil were of no Breadth, and as if there were to come but one Ray with a Force equal to the Forces of all them that are contained between BE and BF .
5. Now if we confider the Rays which come from any other Point of the Object, as from A, we fhall find, that all thofe which enter into the Eye, will be refracted in fuch a Manner, as almoft to meet all together in the fame Point X . And fo likewife thofe Rays which come from any other Point between A and B, they will meet very near together in fome Point of the Bottom of the Eye between X and O. So that we may affirm in general, That every Point of the Object, afts very near-
5. That the Rayswhich come from different Points of the Object, fall upon as many. different Points of the Recina.
ly but upon one and the fame Point in the Bottom of the Eye, and on the other Hand, That crery Point of the Bottom of the Eye receives very nearly the Impreffion of one Point only of the Object.
6. That the Rays which come from Some Points, do not reunite fo exactly as thofe which come from fome other Points.
7. That if the Eye could no soay be altered, the Refractions could not rezenite upon theRetina, the Rays which come from Objects at all Sorts of Difsances.

Tab. VI.
6. I fay very nearly, not exactly. For if the Superficies EDF, GHL, LMN, were of fuch a Curvature, as to carry the Rays from one fingle Point, fuch as B, to another fingle Point fuch as O , exactly; it would be impoffible for them to unite the Rays which come from any other Point fuch as A, becaufe every other Point is differently fituated from B with refpect to the Eye.
7. Now we may obferve, that if the Object be removed further from the Eye, in fuch a manner that the Point B continues always in the Line BD, and the Shape or Difpofition of the Eye be no ways altered; the Rays which come from the Point B to the Pupil, will not diverge fo much, or be at quite fo great a Diftance from each other as they were before ; wherefore in entring the Three Superficies EDE, GHI, LMN, they will be refracted in fuch a manner, as to reunite a little nearer to the Chryftalline Humour than the Point O is. On the other Hand; if the Object be removed nearer to the Eye; becaufe the Rays which come from the Point B in order to pafs through the Pupil, diverge more than they did, their Refractions will caufe them to meet beyond the Point O. And the Ubject may be fo very near the Eye, that the Rays which come from any one of the Points, may diverge fo much, as never to unite at all. In all which Cares, 'tis plain, there would be no one Point of the Object, that would not affect too large a Portion of the Bottom of the Eye; and confequently the Action of each Point, would be confounded by that of the Point which is next unto it.
8. Of the Al- 8. This is what would happen, if the Figure of the teration made in the Eyc, in order to reunite them. Eye could not be altered; but to remedy all thefe Inconveniences Nature has fo formed the Eye, that it can become flatter or longer to fuch a Degree, as to adjuft it felf to the different Diftances that we would view the Object at. Wherefore when we would look upon an Object at a greater Diftance, than it could be feen diftinetly at when the Eye is of the ufual Figure, it is then made flat by the Help of the four right Mufcles, all which acting together, pull it towaris the Bottom of its Ball, and the Retima is by this means near enough to the Chryftalline Humour; to be exaclly in

Chap.30. of Natural Philosophy.

the Place where all the Rays which come from any one Point of the diftant Object are reunited. And when we would look upon an Object that is very near, the Eyc is lengthened by the Help of the oblique Mufcles which encompafs it, and by being fwelled, comprefs it; and then the Diftance between the Chryitalline Humour and the Retiza becomes greater, that the Rays which come from any fingle Point of the Object which is fo near, may be reunied in a fingle Point upon the Retina. If, therefores there remains any Confufion which Nature has not provided a Remedy for, it is only in refpect to the Action of thofe Rays which come from an Object that is too near the Eye, at two or three Inches diftance, fuppofe; but this is neediefs, or at leaft, not neceffary to be remedied; for as Sight was given us principally to take Notice of Things at a Diftunce, and there is very feldom any Occafion for feeing Objects fo very near, Nature has not provided for it.
9. This Approaching and Receding of the Chryftalline Humour with réfpect to the Bottom of the Eye, is fo neceffary in order to fee diftinclly, that becaufe it cannot be performed by Mufcles in fome Birds, the Coats of whofe Eyes are almoft as hard and-inflexible as Bones, Nature has provided another Way. For there are placed in the Eyes of fuch Birds certain black Filaments, that are not in the Eyes of Men or other Animals, by which the Chryftalline Humour is connected with the Bottom of the Eye, and by which it can be made to draw nearer to, or remove further from the Retina.
10. It is obfervable, that the firtt of the three RefraCtions which the Rays of Light undergo, in paffing thro' the Humours of the Eye; is not to be found in Fiihes who live in the Water, becaufe the Rays are already in an aqueous Medium, when they begin to enter into the Eyes of Fifhes. And this feems to be a Reafon why the Want of this Refraction fhould be compenfated fome ocher Way. And fo we find it is; for Nature has made the Chryftalline Humour of Fifhes Eyes more convex, infomuch, that it is almoft as round as a Clobe, and not of the Figare of a Lens, as it is in other Animals.

1I. As moft antient Perions grow lean and thin by Age, fo their Eyes grow fat and more funk than when they werc younger. Now in this Figure of the Eycs, the Rays which come from an Object very near, come to the Retira before they are reunited; wherefore they imprefs but a confufed Image upon it; fo that it is imponfi-
9. That the Eyes of 'Birds are altered in a different manner.
ble for fuch Sort of Eyes to receive any diftinet Image, except when the Object is ar a fufficient Diftance.
12.That thofe 12 . On the other Hand, fome Perfons have by Nature

Eyes whiib are very large and fick out, receive only a conyiufed Impreffion of Objects that are at a Difance. Eyes that are longer and more gibbous than thofe of other Men; in which the Diftance betwixt the Chryftalline Humour, and the Bottom of the Eye, is likewife greater than ufual: In thefe, the Rays which come from one Point of an Object further off than ordinary, are reunited alfo, before they come at the Retina, and then are feparated again, fo that they fpread themfelves a little upon the Bottom of the Eye. Whence it comes to pals, that thefe Sort of Eyes can receive only a confufed Image of Objects that are at a Diftance; and have a diftinct Image of thofe only that are near.

C H A P. XXXI.

What we mean, when we fay, that the Images of the Objects are impreffed upon the Organs of Sight.

1. That perfert Images of vijible Objects are impreffed ont the Recina.

WHEN we once clearly underftand, that every fingle Point of the Object acts upon one fingle Point only of the Bottom of the Eye which anfwers direAly to it; and on the other hand, that every Point of the Bottom of the Eye receives the Impreffion of but one Point only of the Object; it is not difficult to conceive that the whole Objet acts upon a certain Part of the Retina, which is as exactly of the fame Shape with it, as could be drawn upon a Cloth by the moft skilful Painter. We can yet further conceive, that this Part of the Retiza does ftill more perfectly refemble the Objeet, becaufe it receives as many different Preffures in all its feveral Parts as there are different Colours, or different Degrees of Light in the feveral Parts of the Object. And becaure we call that an Image, or a Species, which has any Refemblance to the Thing which it reprefents, we call that Part of the Retina upon which all the Rays of the Object fall by that Name, and fay, That it impreffes its. Image one the Bottom of the Eye.
2. There
2. There is no need of fearching after any other Refemblance in this Image, than what has been mentioned. For if we would make any further Compariion betwist it and the Object, we fhall find them very different. And firft herein they differ, that a Body is always reprefented by a Superficies, and fometimes a Suparficies by a Line, and fometimes a Line by a Point: Secondly, The Situation is different, for the upper Part of the Object is painted upon the lower Part of the Eye, and the right Side of the Object upon the left Side of the Eye, Oor. Laftly, They differ in Magnitude, for a very large Object is reprefented upon a very fimail Part of the Eye.
3. And the further diftant the Object is, fo much the lefs is this Part of the Botrom of the Eye; as is evident in the Figure of the Eye C, where the Space HII, which receives the Image of the Object FG, is lefs than the Space DE on which the Object $A B$, which I fuppofe equal to $F G$, is impreffed; and this very nearly in the fame Proportion, as the Diftance of FG from the Eye is greater than the Diftance of AB.
4. Whoever confiders ever fo little of what we have before laid down, concerning the Nature of Light and Colours, cannot but be of our Opinion, That the Images of Objects are in this manner tmpreffed on the Bottom of the Eye: But he may be further convinced of it from Experience; for if, after having darkned all the Windows of a Room, over-againt which are fome bright Objects, we make a Hole in the Window Shut, and place in it the Eye of an Animal, frefh killed, firfe taking off neatly all the Membranes which the Bottom of the vitreous Humour is covered with, and put an Egg-Shell in their ftead to hold this Humour in, and you will fee upon the EggShell a diftinct Pieture of all the Objects that are without.
5. But becaufe there are fome Difficulties to make this Experiment fucceed well ; I have thought that the fame Thing might be done, by making a large artificial Eye, which I accordingly tryed: The opake Coats, or Tunicks, were all made of thick Paper, except the Retiza, which was made of a very white thin Piece of Vellum; in the Room of the Tunica Cornea, I put a tranfparent Glafs, and inftead of the Chryftaline Humour, was a Piece of Chryftal of the Figure of a Lens, but more flat than this Humour; for fince there was nothing in this Machine but Air, in the Places of the aqueous and, vitreous Humours, a little lefs Convexity was fufficient to produce
the Refractions required : And becaufe it was very difficult to flatten or lengthen this artificial Eye, in the manner the natural Eye is done by the Mufcles, I placed the Vellum in fuch a manner, that it could be moved backward or forward, at pleafure.
6. How to See the Image of an Object in this artificial Eyc.
6. This artificial Eye being fo placed in the Window of a Room, that the Glafs which reprefents the Tunica Cornea, may be directly againft fome Objects that are very much illuminated; we fhall not only fee the Images of them impreffed upon the Vellum, but we may alro 'obferve all the moft minute Particularities, which we before collected from Reafon. Thus we may obferve,
7. The firft Objervaction.
,
7. Firft, That it is at one particular Diftance only of the Vellum from the Chryftal Lens, that the Image will appear the moft diftinct that is polfible.
8. The fecond Obfervation.
9. The third Obfervation. 10.The fourth Obfervation.
II. The fifth Obfervation.
12. The fixth Objervation. treme Parts, as in the Middle.
9. Thirdly, That if the Vellum be too near the Lens; the Image will be lefs, and very much confufed.
10. Fourthly, That if it be too far, the Image will be larger, but all confured likewife.
II. Fifthly, That the diftinct Image of any Object, is fo much the lefs, as the Object is more remote.
12. Sixtbly, If a certain Diftance between the Lens and the Vellum, be requifte to make a diftinct Image of an Object at a moderate Diftance ; the Veilum muft be moved a little nearer, fo that the Diftance of the Lens from it may be tefs, if we would have a diftinct Image of aanother Object, which is at a confiderably further Diftance.
13. The feventh Objer. uation.
13. Seventbly, When the Vellum is at a proper Diftance, to reprefent diftinctly an Object which is at a great Diftance, fuppofe an Hundred, or Two hundred Yards; there is no need of altering it, in order to reprefent, as diftinct as is poffible, any Objects that are at a ftill greater Diftance.
14.The eighth Obfervatioun. Eye, the further mult the Vellum be removed from the Lens.
15. The ninth 15. Nintbly, When the Object is too near this artiOtFervation. ficial Eye, it is impofible to get any diftinct Image, let the Vellum be removed to what Diftance we will.

Chap. 3 r. of Natural Philosophy.

16. It is to be obferved, that in thofe Cafes, where any Alteration mult be made in the Eye, in order for the 1mage to become diftinct, this Alteration is much lefs in the Eyes of Animals, the Coats of which are flexible, than in this artificial Eye. For in Animals, the length-
17. The difference betwixt thisartificial Eye, and the natural Eye. ning or fhortning the Eye being always attended with a greater or lels Convexity of the Cornea, the Figure of this Coat contributes its Part in producing that Effect which in the artificial Eye wholly depends upon the Length or Shortnefs of it. Thus, if when the artificial Eye has received a diftinct Image of a diftant Object, another Object be placed before it at fuch a nearer Diftance, that in order to have the Rays which come from every Point of it reunited, the Eye ought to be made One hundredth Part longer thain it is ; the Vellum muft be removed juft fo much further from the Lens: But in a parallel Cafe of the natural Eye, it is not requifite that That fhould be lengthened a hundredth Part of the Whole, becaufe the Tunica Cornea being more gibbous than it was before, caufes greater Refractions, and fo makes the Rays reunite fooner than they would otherwife do.
18. The Image of an Object impreffed on the Eye of an Animal, being received in a Place where the Capillaments, of which every Optick Nerve is compoled, meet each other; it is very probable, that this Image is fo impreffed, that the Rays do net move thefe Capillaments fide-ways, but always fall directly upon the Extremities of them. To which, if we add; That the Impreffion which is made upon the Extremity of every one of thefe Capillaments, is communicated from one End to the other, we may conclude, that the Image of the Object is tranfmitted intire to that Place where thefe Capillaments end in the Brain.
19. And becaufe we have no Senfation, when thofe Parts of the Body are any way affected, in which there are no Nerves; it is very probable, that the Nerves are neceffary to Senfation. And becaufe we have no Senfation likewife, when any Object makes an Impreffion upon a Nerve, if its Communication with the Brain be hiindred, or if the Brain it felf be affected with any particular Diftemper; therefore it is reafonable to think, that the Nerves are not the immediate Organs of the Soul, but that they are fo formed by Nature, as to tranfmit the Impreffion which they receive, to that Place in the Brain where the Origin of them is, and where probably the immediate Organ of the Soul's Senfation is.
R_{3} 19. How.

Capillaments of the Optick Nerves, tranfmit the Action of the Objert to the Brain.
19. That there is a Part of the Brain wohich is the principal Organ of the Sorit.
19. However, we may further obferve, that there being Two of a Sort, of almolt all the Parts of the Brain, they cannot all of them indifferently be thought the immediate Organ of the Soul. On the contrary, it is highly probable, that fince we have but one Senfation only, though two larpreffions are made by the Object upon the external Orgazs of the Senfes which are affected, that there is likewife one particular Place in the Brain where there two lropreffions meet. Which that Place is, may be very difficult to determine; but whether it be that finall Gland which Phyficians call the Conarium, or whether it be any other Part of the Brain, it is hardly to be conceived how they can thus unite, without fuppofing fomething equivalent to what is now faid.
20. Befides the manifelt Refemblance which there is
20. A Conjectare about the Continuation of the Capillaments of the two Optick
Nerves.
Tab. VII.
Eig. 2. betwixt the two Eyes; I imagine there is another yet, which cannot be difcerned by the Senfes, which confifts in this, that the Number of Capillaments in one Optick Nerve, is equal to the Number of Capillaments in the other Oprick Nerve. Thus (to make the Thing eafier) if we fuppore the Optick Nerve of the Eye A to contain five Capillaments, the Extremities of which are CDEFG; it is reafonable to think, that there is the fame Number in the Nerve of the Eye B, the Extremities of which are HIKLM. I imagine alfo, that the Extremities E and K, which are in the Middle of the Reft, are exaclly at the End of the Optick Axes, that is, at the Ends of the Lines TE, VK, which pafs through the Centers of the Pupil, the Chryitalline Humour, and the Body of the Eye; and that the reft are placed fo regularly about thefe, that we may take feparately all the Capillaments of one Eye in order, and affociate them with thofe in the other Eye taken in the fame Order, fo as to make up a great Number of Pairs, which may be called Sympatbetick: Thus beginning wich the Capillaments C and H , which are moit on the Left Hand, I make them the firt Pair ; the other Pairs are DI, EK, FL, GM. I am alfo of Opinion, that eacl: Pair of Sympatbetick Capiliaments end in ${ }^{1}$ the

[^59]Nerves meet in the Drain or no, it is evident, that two Images of every Object impreffed upon thole Capillaments muft be leen in the very Came Place (becaufe the Optical Axes meet each other) that is, muft become one; and therefore the Objeat appears fingle.
fame Point of that Part of the Brain which raifes a Senfation in the Soul; as you fee in the Figure, where the Pair CH mcet in the Point O of the principal Organ X, the Pair DI in the Point P, the Pair EK in the Point Q, the Pair FL in the Point R, and the Pair GM in the Point S.

2I. This being fuppofed. I conceive that when we would look upon an Object, we turn our Eyes to it in fuch a manner, that the two Optick Axes meet at the Point which we fix our Attention principally upon. Thus the Rays TE, VK, coming from that Point, and falling upon the Sympatbetick Capillaments E and K , the two Impreffions which they make there, are reunited in one Point only, viz. in the Point Q . So likewife the Part of the Object which is on the right Hand, fhakes the Sympatbetick Capillaments D and I, the Impreffions of which are carried to P. And again, the Part of the Object which is on the left Hand acts upon the Sympatbetick Capillaments F and L , and their Impreffions unite in the Point R; and fo of the reft. So that though there be two Images impreffed upon the Eyes, yet there is but one impreffed upon that Part of the Brain X which we here fuppofe to be the immediate Organ of Vifion.
22. What has been already faid of the Images which vifible Objects imprels upon the Eye, being well undeiftood; it cannot but be a ftill greater Surprife, that the Ariffotelians and almoft all Phyficians flould be fo miftaken, as to affirm, that thefe Images are impreffed upon the Chryytalline Humour, and go no further; for it will evidently appear, that the different Impreffions of the diverfe Points of the fame Object, are all confured there.

C H A P. XXXII.

How Vijion is performed.

r. What is
ant by $V_{i}-$
FTER having traced the material Image of the Ob-
 ternal Organs, to the Brain, I come next to explain how this raifes in us an inmazaterial Image, or that Senfation in which Sight properly confifts, and to thow the Reafons why it is clear and difinct ; and alfo how we perceive the Place, Situation, Diftance, Magnitude, Fisure, Number, and the Motion or Reft. of fuch Objects.
2. How the 2. In order to undertand how this immaterial Image immmaterial I.
maree of the
formed in us, I mutr remind you of a certain Truth otjectis which has been fufficiently demonftrated before, and that formed in the is, That fuch is the Nature of our Soul, that particular
Sorld Motions of the Body to which it is united, are the Occafions of particular Perceptions in it: Now different Parts of the Object, act diftiactly upon different Parts of the Bottom of the Eye, and their Impreffions being. tranfmitted to that Place of the Brain which is the principal Organ of the Soul, it is eafy to apprehend, that the Soul muft have as many diftinct Senfations raifed in it, at the fame Time, and without any Confufion, as every one of, them excites different Motions.
3. Whence it 3. It is manifett alfo, that this immaterial Image, ought is that this I_{-} imazo is 5_{0} chear. to be fo much the more vivid or clear, as the Object fends forth more Rays of Light which are reccived by the Eye, for by this means the Impreffion made upon the Organ will be fo much the ftronger And the Largenefs of the Pupil conrributes likewife to this Clearnefs, becaufe it affords Room for more Rays that come from the fame Point of an Object to imprefs the Image on the Bottom of the Eye.
4. That the rmage of a Body at a Diftrance ought to be as clear as that of a 'Bor'y of a Bory.
4. It is true, that if we confider the Action of one Point of the Object only, we muft fay, that the Senfation ought to be weaker or more obfcure in proportion to the greater Diftance of the Body, becaufe the Rays of Light which come from one Point of it diverge, and therefore fewer of them enter into the Pupil when the Eye is far of, than when it is near. But we know that one Point off the Object does not act alone, but always acts in com pany with a great many others, and the whole Image of

Chap. 32. of Natural Philosophy.

the Object is impreffed upon fo much a lefs Space on the Retina, as the Dittance of the Object from the Eye is greater. Thus if one vifible Point, at the Diftance of two Miles, fend to the Pupil but half the Rays that it would do if it were but at a Mile diftance only, this is made good by fome other vifible Points that are near it, which fend their Rays upon the fame Capillament of the Optik Nerve, where one fingle Point of a nearer Object would fend its Rays; wherefore the Vifion ought to be as ftrons and vivid.
5. To this we may add, that becaufe we open the 5 . Why diPupil of the Eye a little more when we look upon Ob- - fant obijefts jects that are at fome diftance, than when we look at atcpar to usis. thofe which are near; therefore we take in more Rays from any Point than we do when the Pupil is not fo wide, and this makes the Senfation more clear. And thus we find, that a Mountain looked upon at fome diftance does not appear of fo dark a Colour as when we are nearer it.
6. As to the Dijfinctuefs of Viffon, that evidently de- 6. How Obpends upon the Refraction of the Rays; and it is then jectld stypcar as diftinct as poffible, when the Refraction is fo made, as that all the Rays which come from one and the fame Point of the Object, meet together exactly in one and the fame Point of the Bottom of the Eye: But this never is precifely fo, but in thole Rays which come from that Point of the Object which is at the Extremity of the Optical Axis; for it is evident, that thofe Rays which come from the other Points, are reunited fo much the lefs exactly one than another, as they are more diftant from this Axis; wherefore we cannot at the fame time have the moft diftinct Senfation but in this Place alone, and the reft will be more confufed.
7. This being fo, it follows from what was before de- 7. Why old monftrated concerning the confured Impreffion of an ${ }_{j e c t s}^{\text {Mcf }}$ feo obObject that is near, on the Eye of an Old-Man; that near them vehe murt fee fuch a near Object very confuredly; and thus ry corfifed. we fhall efcape the Error of thofe, who are of Opinion, that the Confufedners in the Sight of Old-Men, ariles from hence; that the Faculty of Seeing, or the Sery \sqrt{c} of Seeing is weaker in them than in others. And indeed it is very furprizing, and very lucky, that at a Time when the Doctrine of Reffactions was not at all known, A rifootle fhould hit upon faying, that if an old Man had the Eye of a young Man, he would fee as the young Man does; which is the fame Thing as to fay; that the Fault

Fault in the Sight of an old Man , does not arife from any Defect in the Facuilty of Seeing, but only from fome Defect in the Organs.
8. Why fome Perfons fee Objects that are at a Diftance confisfedly.
9. Another Caufe of the
Diftinctuess of Vifion.
8. On the other Hand we are affured, that thofe Perfons, whofe Eyes are longer and more gibbous than ordinary, receive a diftinct Impreffion only of thofe Objects which are near; and a confufed Impreffion of thofe that are diftant: Whence it is eafy to conclude, that fuch Perfons muft fee Objects that are near them diftinctly, and thofe that are at a Diitance confufedly.
9. The Diftinctuefs of Vifion depends alfo upon the Largenefs of the Space which the Impreffion of the Ob ject takes up in the Bottom of the Eye, where there ought to be at leaft as many Extremities of the Capillaments of the Optick Nerve, as there are different fenfible Parts in the Object which fends forth the Rays, in order for every one of them to make a diftinct Impreffion. For if the Rays which come from two different Parts of the Object, meet together in two different Points of the fame Capillament, it is the fame Thing, as if they met in one Point, becaufe they cannot communicate two different Motions to this Capillament at the fame time. And this is the Reafon why Objects, that are at a very great $\mathrm{Di}-$ ftance, becaufe their Images are impreffed on a lefs Space, are feen but confufedly.
10. Further, if this diftant Object be compofed of a great many different Parts which are of different Colours, it is evident, that if feveral of thefe Parts act together upon the fame Capillament, that which is of the brightert Colour is the only one that will be feen, becaufe the Capillament will receive the Impreffion only of this Part. And thus we fee in a Meadow where there are a great many white Flowers mixed with a vaft Number of green Spires of Grafs, at a Diftance it looks all White.
II. If it had never been obferved, that we fometimes have no Perception, when we would have fome, and at other Times have a Perception, when we would not, we fhould not have been fo ready to have connected our Judgement with our Senfation, ard Senfation would only have been fimple Perception: But when we had once made this Reflexion, our Senfation muft neceffarily be a compound Perception. And if we had been more wary in our Judgement at firft, fo as not to have affented to any Thing of which we had not a clear Perception, all that we could plainly have inferred, is, that fomething concurred with us to caufe Senfation. But having been
ferently accuitomed from the Beginning, and over hafty in our Judgement, we have drawn a differenc Confequence; and look upon the Senfation, which now upon more mature Deliberation, we acknowledge only as an accidental Mode of exifting, to be without us, and therefore we refer it to external Objects; and we have fo often made this Judgement, that we are accultomed to do it without any Difficulty, and without the leaft Sufpicion of its not being conformable to Truth.
12. We have been confirmed in this Errour about V_{i-} fon by another Miftake. We obferve, that when an opake Body is put between the Object and our Eye, we then ceale to fee it: From whence we ought to conclude, that the Thing which concurs with us to excite Senfation, is beyond the opake Body, and being no longer able to act upon our Organs, we ceafe to have the Senfation we had before. But inftead of reafoning in this manner, we imagine, that the Senfation which we have of Light or Colour, that is, the Light or Colour which we perceive, is beyond that Body, and fo carrying our Imagination as far as the Object it felf, we go as it were out of our felves, along the Line in which we receive the Impreffion of the Object, and afcribe our own Senfation to it, that is, the Colour which we perceive.
13. The farne Thing that leads us to refer the whole Senfation which we have of an Object to fomething without us, leads us alfo to refer all the particular Senfations of which it is compofed, in the fame manner, in ftraight Lines, according to the Direction in which we receive the Impreffions from different Parts of the Object: Thus the Impreffion which is made in the lower Part of the Bottom of the Eye, coming to us in the higheft of all the Lines by which the Object raifes any Senfation in us; it is along this Line that we refer the particular Senfation which arifes from it. So likewife we refer to the loweft Part of the Object, that Senfation which arifes from the Impreffion made by it, on the higheft Part of the Bottom of the Eye. And hence it is, that though the whole Image which the Object impreffes on the Bottom of the Eye be inverted, yet when we look upon the Object through a fimple uniform Mediunn, this hinders not but that it appears in its true Situation; that is, the immaterial Image makes the Object appear to us as it is.
14. How we perccive its Difance.
14. The Knowledge of the Diftance of an Object, as well as that of the Situation of it, depends upon our referring our Senfation to fomerhing without us. For our regard being chiefly upon the Pofition of the two optical Axes, and the Motion of the right Mufcles of our Eyes by a natural Way of Reafoning, Chowing us very near, the Relation or Inclination which thefe two Axes have to each other, and at what Diftance from us they meet together; it is to this Diftance that we refer our Senfation, that is, to the fame Place where the Object is. Wherefore if at any Time we are deceived in the Judgement we make of the Diftance of any Object, when we look upon it with both Eyes, it is becaule we do not know exactly at what Diftance the Optical Axes meet.
15. Another Way to know the Difance of an Object.
15. And if we make ufe of but one Eye, we can know the Diftance of an Object, provided we move from one Place to another; for we have fome kind of Memory of the Pofition of the Optical Axis in the firft Station, when we really attend to the Pofition of it in another Station, fo that we imagine two Optical Axes, though there be indeed but one, and by that means guefs at the Diftance where they meet; and to this we refer the Object.
16. \mathcal{A} Third 16 . Since we cannot incline the Optical Axes to each Way to know the Difance -f an Objecis. other in a certain manner, in order to make them meet at one Point of an Object which is at a certain Diftance from us, but at the fame Time, we mult put each Eye into a particular Difpofition or Figure, neceffary to fee diftinctly at that Diftance; we may prefume that Nature has fo ordered the Mufcles of the Eyes, that they neceffarily procure both thefe Effects at the fame Time: And that this is fo, we fhall have no Doubt, if we obferve, that they who fee but with one Eye, move their Eyes in the fame manner to look upon Objects at different Diftances, as they who fee with both Eyes. So that it is fufficient, if our Eye be fo flattened or lengthened in a particular manner by the Action of the Mufcles, as to caufe fome Alteration in the Brain, which puts the Soul upon conceiving the Pofition of the Optical Axes: And fince the percciving this Difpofition is the moft natural Argument to make us know the Diftance of an Object, it follows, that the lengthning or flattening the Eye is alone fufficieat to difcover this Diftance.
17. But becaufe the Alteration of the Shape of one Eye only, when we make ufe of it, to fee diftinctly at different Diftances, is not fo Cenfible, as the Alteration of the Situation or Pofition of the two Eyes, when in order to look at different Diftances, we turn them differently that we may make the two Optical Axes meet in the fame Point; therefore we are not to think, that this latter Alteration is fo exactly made, when it is determined by the other, as if it were caufed by that Attention which we have when we look with both Eyes upon the fame Point of an Object. And this is the Reafon why we are more apt to be deceived in the Judgement we make of Diftance, when we ufe but one Eye than when we ufe both. And indeed if we try to touch a an Object at three or four Foot diftance, with the End of a Stick of about the fame Length, we fhall find, that if we look at it but with one Eye, we fhall mifs touching it two or three times together; whereas if we look at it with both Eyes, we fhall touch it the firft Time.
18. Whatever the Alteration be, which is made in the Eyes when we look upon Objects at unequal Diftances, it is certain, that That Alteration cannot be at all fenfible, when the Diftance is fuch, that the neareft Object is a great Way off; wherefore we muft be very liable to be more deceived in our Judgement of great Diftances than of fmall.
19. Befides the two forementioned Means of judging 19. That the of the Diftance of Objects, which are the principal ones, there is yet fome others: As Firft. Having often obfer or nofs of the the ved, that an Object appears more confufed the further it mages of obis diffant from us, we make this a Rule of determining jects, belp us the Diftances of Bodies, fo that according as they appear their $D i j$:more or lefs confufed do we imagine them to be at a ${ }^{\text {tance. }}$ greater or lefs Diftance.
20. So likewife, becaufe we have often obferved, 20 . The fame that an Object looks of a brighter Colour, the further it Toilongs from is removed from us; therefore when we fee an Object tbeir being of a brighter Colour than it ufes to appear of when it is more or lefs. near; we conclude, that it is at a great Diftance from ${ }^{\text {bright. }}$ us.

1. An Object at thrce or four Froot Diffance) It is to be obferved, that the Stick muft not be thruft directly upon the object, but moved obliquely, in the fame manner, as if, when a Ring is turned Side-ways to
the Eye, we would try to run a Stick through it; as is juftly remarled by Malbranch in his Engriry after Truth. Book I. Chap. ix. Sect. 30
2. That me know the DiAance by the Situation alfo:
3. The In_{-} serpofition of a great many other Bodies, makes $u \mathrm{~s}$ think, that the Object is at thegreater Difiance.
4. How we come to knom the Biznefs of
Objecis.
5. The Situation is another Means ftill of knowing the Diftance of Objects. For, of thofe Things which we imagine to be lower than our Eye we judge them to be fartheft diftant which affect the Eye, with the higheit Rays; and on the other Hand, of thofe Things which we imagine to be higher than our Eye, we judge them to be farcheit diftant which affect the Eye with the loweft Rays.
6. Further, the Interpofition of a great many other Objects, between us and the Object we look at, makes us think, that the Diftance is greater than otherwife we fhould; becaufe the Diftance which we conceive to be betwixt every one of them, is the Meafure which we compute the Diftance of the Object by: Thus in the Initance of the Moon, when it is at the bigheft above the Horizon, and we look at it through the Air only in which there are no other vifible Objects, we imagine it to be nearer to us, than when it rifes or fets, becaufe at thofe Times, there are a great many intermediate Objects upon the Earth, between us and it.
7. When we know the Situation and Diftance of an Object, by joining thele together, we form a Judgement of the Bignefs of it; For, becaufe we imagine the Extremities of an Object, to be contained between two ftreight Lines coming from the Eye, which diverge from each other in proportion to their Diftance; therefore we eafily conceive what the Bignefs of the Object is at a given Diftance. So that if at any Time we are deceived in our Judgement of the Bignels of any Object, it is becaufe we are firft deceived in our Notion of its Diftance. Thus, becaufe we cannot truly comprehend the Diftance of the Moon or Sun from us, therefore no Imagination can reprefent thofe Bodies to us fo great as they really are.
8. Why the 24. And this is fo true, that the Stars feem to us Stars feem fomewhat larger, when the Interpofition of vilible Obbigger to us moben they are in the Horizon. jects which are between them and us, helps us to imagine their Diftance to be greater; For it is not owing I to the Interpofition of Vapours, as the Ancients thought,
9. To the Interpofition of Va pours, \&xc.) Since the Angle under which the Moon appears when in the Horizon, is not greater than ordinary, it is evident, that nothing ought here to be afcribed to the

Refraction of the Vapours. And that this Angle is not greater than ordinary, is clear from hence ; that though every particular Part of the Horizon (as well the Diftances of the Stars from each other as the Stars

Chap.32. of Natural Philosophy.

thought, that makes the Stars to appear of different Bigneffes, as if the Rays which came from the Extremities of them to the Eye of the Spectator, were by that means refracted, fo as that he fhould fee them under a bigger Angle. For modern Affronowisers who have meafured the Angles under which the Stars appeared; when they were in the Horizon, and when they were at their greateft Altitude in the fame Day, I have always found them the fame.
25. It is to be obferved alfo, that very luminous or bright Objects muft needs appear bigger than they would do if they were not fo bright. For if the Image which they imprefs upon the Bottom of the Eye, affects not only a certain Number of Capillaments, but fpreads it felf to the Extremities of other Capillaments which are about it, it is the fame as if it had covered them alfo; becaufe the Rays have fo great a Force that all thefe Capillaments are moved by them, and not at all hindred by the Motion of thofe Rays which come from the other furrounding Bodies which affect the fame Part, but are very faint ; therefore a bright Body appears fo much the bigger, as it takes up part of the Object which is not fo bright, whofe Rays are fwallowed up by it.
26. We may add fill further; that the Impreffion of a very luminous Body may be fo ftrong as to extend it felf all round to fome Capillaments, which no Rays at all come to from the luminous Body; in which Cafe, it is manifeft, that the Object muft appear much bigger than it would do, if its Light-were more faint. And it is certain, that we fee the fixed Stars in this manner; becaufe if we weaken their Action; by artificial26. Why the fixed Stats, tober looked at through a Telefarpes appear as mazico diminished, as ofber Otjectis appear magnijyed. ly contracting the Pupil, and looking at them through a Hole made in a Card with a Needle, ${ }^{2}$ they appear much lefs. But that which moft furprifes thofe who
themfelves; nay the Stars, when they feem to be larger, fiem alfo to take up more of the Space which furrounds them;) though, I fay, every Part of the Horizon feems to be equally inlarged; yet the whole Citcle cannot contain any more than 360 Degrees; wherefore Bodies in the Horizon are not feen under a greater Angle, but cevery Degree in the Horizon feems greater thann in the Meridian,

1. Have always fourd them the Some) Nay, they have found the Diameter of the Moon, when at the higheft, a little bigger, than when The rifes or fets. See Malbranch's Search after Truth. Book I. Chap. ix. Sect. 3 .
2. They appear much lefs) Nay, that the fixed Stars, by reafon of their immenfe Diftance, are but like Points only, except that their Light is a little dilated by Refraction, is
who fee not the Reafon of this, is, that when we look at the Stars with a Telefcope, they appear as much diminifhed as other Objects appear inlarged by it; and for this fole Reafon, becaufe hereby the Force of their Rays is very much weakned.
27.The knowing the Bignefs of an Object, belps us much in judycing of its Diffance.
3. How we kiow the Figare of an OL ject.
4. Why me fee an Object Single, when see look at it woith both Eyes.
5. Why an Object appears double.
6. Another Way to fec an Object double.
7. It is certain alfo, that as the Knowledge of the Diftance helps us to find out the Bignefs, fo likewife the knowing of the Bignefs helps us to conceive the Diftance. Thus, when we know that a Man is about five or fix Foot high, when we fee him to appear but very little, we conclude him to be at a great Diftance.
8. It would be fuperfluous to fhow particularly how we know what Figure any Object is of, after what has been faid concerning knowing the Situation, Diftance, and Bignefs of its Parts ; for the Knowledge of its Figure confifts in there.
9. Nor is it difficult, after what has been faid, to give a Reafon why an Object appears fometimes fingle and fometimes double; for it is evident, that an Object muft appear fingle, when it fo affects the Sympathetick Capillaments of the two Optick Nerves, as to imprefs a but one Image upon the Brain.
10. And this is confirmed from hence, That if we prefs either of our Eyes with our Finger, fo as to make it receive the Image of the Object on a different Part from what it would do by the common Motion of the Mufcles ; as it is certain, that the Images which are then impreffed on the two Eyes, do not fall upon the Sympathetick Nerves, nor reunite in the Brain, fo we cannot fail to fee the Object double.
3I. So likewife, if we look very intently upon a particular Object, and at the fame time another Object be placed nearer or further off, which confequently cannot imprefs its Image on the Sympatbetick Capillamzents of the two Optick Nerves; in this cafe it muft imprefs two Images on that Part of the Brain which is the immediate
evident from hence, that whenthey are about to be eclipfed by the Moon, when they enter into its Body, their Light does not decreafe gradually (as that of the Planets does) but vanifkes all at once, and at the

End of the Eclipfe, it appears again all at once.
I. But one Image zupon the Brain) See the Notes on Chap. xxxi. Art. 20.

Chap.32: of Natural Philosophy.

Organ of Vifion, and therefore 1 it mult be feen double.
32. Having feen how we come to know the Situa- 32. How we tion, Diftance, Magnitude, and Number of Objects by perceive Moour Sight; nothing more remains but to examine how tion and Ref. we know whether they be in Motion or at Roft. Now it is not difficult to conceive, that we know a Body to be in Motion; firt, when its Image appears fucceffively applied to different Images of certain Objects, which we do not compare with any other, but imagine to be immoveable; or when we find that we muft turn our Head or our Eyes in order to have the Ubject always at the End of the Line, along which we carry our principal Attention; or laftly, when, if we move neither our Eyes nor our Head, we find it is gone out of that Line. The contrary to all which makes an Object appear to us to be at reft.

1. It $m u f t$ be feen double) It may be further obferved here, that if the Object now mentioned, be placed beyond the Point where the Optical Axes meet, it will Tab. VII. then appear double in Fig. 2. fuch a manner, that of the two Images, that which is on the right Hand is feen with the right Eye, and that on the left Hand with the Jeft Eye; but if the Object be on this Side that Point, then the Image which is on the right Hand will be feen with the left Eye; and the Image on the left Hand with the right Eye. The Reafon of which is, becaufe in the former cafe the

Object impreffes its Image on HIK the left Side of the right Eye, and therefore is feen by it on the right Hand, and on EFG the right side of the left Eye, and therefore is feen by it on the left Hand: In the latter Cafe is impreffes its Image on : LM the right Side of the right Eye, and cherefore appears to it on the let: Hand; and on CDE the left Side of the left Eye, and therefore appears to it on the right Hand.

What furprifing Things follow from this Objcrvation, may be feen in the Notes on the following Cisapter.

C H A P. XXXIII.
 Of DIOPTRICKS.

1. That our Opinion about Vifion may be confirmed by the Examination of different Sorts of Per-pectiveGlaffes and LookingGlaffes.
2. Why an Object is multiplied when looked at thro, amoltiplyingGlafs.
Tab.VIII.

IN order to prove the Truth of fome of thofe Suppofitions which we have made about Vifion; we ought now to confider, whether or no all thofe Things, which upon thefe Suppofitions ought to come to pafs, when we look through different Sorts of Perfpective-Glaffes or upon Looking-Glaffes, be agreeable to Experience; for this will be a great Proof of the Truth of thofe Suppofitions.
2. We will begin with Perfpective-Glaffes, and firft let us confider that Sort called Multiplying-Glafjes, fuch as that in the Figure $A B C D$. Now it is evident in the firt Place, that without this Glars, the Eye E would fee the Object F, by means of the Rays which come from F to G; and becaufe the Superficies BC is here parallel to the Superficies AD, which is oppofite to it, and therefore the Refraction which the Rays fuffer when they enter into the Glafs, is deftroyed by the Refraction made at their coming out ; it follows, that the Eye ought notwithftanding, to receive the Impreffion of the Object in the fame Place G, where it would have received it if there had been no Glafs, and for this Reafon it ought ftill to fee the Object in F. It is alfo certain, that the Object F, would make an Impreffion upon an Eye placed in N by the Rays which it would fend thither, if there were no Glafs between; but becaufe thefe Rays now meet with the Superficies $A B$, by which they are fo refracted, that when they come out of the Glafs, they enter into the Pupil of the Eye E, and afterwards go on in fuch a manner as to fail upon that Part of the Bottom of the Eye marked I, where they imprefs fuch an Image as an Object placed in M would do; therefore this caufes the Eye at the fame Time that it fees the Object F in its true Place, to fee it alfo in M. So likewife the Rays which would excite Vifion in the Eye, if it were placed in O , and no Perfpective-Glafs intervened, being in this Cafe refracted by the Superficies CD, fo as to imprefs an Image of the Object F on the Part of the Eye marked H, where an Object
placed in L would make its Impreffion if there were no Glafs; it follows, that the Eye E ought to fee yet another Object F in L. In a Word, it is eafy to infer, that the Eye muft fee the Object F in all thofe Places, where the ftreight Lines terminate, which, coming from the Pupil, pals through the feveral Sides of the Glafs, by which the Rays of the Object are fo refracted as afterwards to make an Impreffion of it upon the Retina.
3. I have nothing further to add to this, but only that fometimes the Object when looked at through the Sides AB , CD may appear differently coloured from what it does
3. Why it fomerimes appears colozz when looked at through the Side BC; the Reafon of which is, becaufe the Rays which come from the Object through the Sides $A B, C D$, are refracted pretty much in the fame manner, as they are by a Prijm, which has been explained before.
4. Let us now examine a convex Glafs fuch as that 4 . Hon Rays in the Figure CDEF. Now it is to be obferved, that that come as it is the Property of this Glafs to collect into a Point form dijifereme the Rays which fall parallel upon it; fo is it the Pro-reffratede in in perty of it, to collect into a Point, likewife the feveral pafing thros. Rays that fall upon it from any fingle Point of an $\mathrm{Ob}-{ }^{-}{ }_{G}^{d}$ cans. ject, with this Condition, that the Point where they are Tab. X. reunited is fo much the further diftant from the Glafs, as the Point from which the Rays feparate is nearer to it ; and this latter Point may be fo near, that the Rays which proceed from it, may never be reunited at all, but become parallel or fomewhat diverging when they come out.
5. This being fuppofed, if the Object AB be at a pro- 5 : Hoima conper Diftance from the Glafs, all the Rays which come from every Point of this Object, may be reunited again may make the in as many other Points. For inftance, the Rays which object confoncome from the Point A may be collected together in $\mathrm{H}_{\text {, }}$ and thofe which come from the Point B, may be collected together in G. Now if the Eye were placed in the Point I, it is certain, that becaure the Rays which convey the Image to it from every Point are converging, that is, enter into the Eye with a Tendency to unite together; therefore I fay it muft neceflarily be, fince the Refractions of the three Humours of the Eye are made in the ufual manner, that by means hereof there Rays muft unite together fomewhat nearer to the Chryftalline Humour than they would otherwife have donie. Wherefore flatten it felf beyond what is requifite to fee Objects diftinctly, whole Rays fall upon it as it were parallel, it is evident, that fuch a Perfon will fee Objects fo much the more confuredly as the Rays which fall on the Eye have a greater Tendency to unite together more on this Side the Retina.
6. Hows it makes old Men fee more diftinet.
6. But if it be the Eye of an old Man, which by the common Decay of Age is become flatter than the Eyes of other Men; becaufe the Reafon of fuch a Perfon's feeing Objects confufedly is, that the Rays which come from any Point in an Object are not reunited when they come at the Retina, which they fall upon fooner than they fhould do, therefore a Convex-Glafs makes them fee diftinctly; for it makes the Rays more converging, and fo helps the Humours of the Eye to reunite them juft when they come at the Retina.
7. Why it " 7. The Diftance of an Object looked at through fuch makesan Objectappear at ${ }^{1}$ ghteater Difance. a Glafs, ought to appear greater, becaufe the Difpofition of the Rays which come from any Point is fuch, as caufes the Eye to put it felf into fuch a Figure, as occalions the Mind to imagine the Diftance greater. And this is the Reafon I why we think the Object to be further off, if we be not prejudiced before-hand in our Opinion of the Place where it really is.

8. As

1. Why woe think the Objecz to be further off) Here the famous Dr. Barrom propofes a very great Difficulty in his Optical Lectures, viz. the 18. towards the End. However, fays he, 1 will not leave off, till I have propoSed to you a very great Difficulty (ount of the Sincerity I owe to you, and to Truth, by no means to be diffembled) wohich is contradiclory to that Opinion which I have been recommending to you, at leaft canaot be folved by it. It is bricfly this. Let the Point A be expofed to the Lens Tab. X. CDEF, at fuch a Difance, that the Raysmay be So bent as to tend toward's s:aniting fomewhere in the Axis HD, and let the Point H be the Place where they meet, or the Image of the Point A as poe have all aloug before afferted, viz. the Focus; between this Point and the Glafs V, let us fuppofe the Eye to be any where placed. I ask, in what Place ought the Point A to appear
to be. In the Nature of Things it cannot be feen behind at the Point H (becaule every Irapreffion that affects the Senfe, comes from the oppo fite Part, viz: A) and it is contrary to Experience alfo. Nowo it Seems to foltow, from the Doctrine we have laid down, that it Should appear to be before us, and at the greateft Difance poffible (a Difzance exceeding any that we can imagine). For the lefs diverging the Rays that come from any Object are, So much the further diftant do woe conceive it to be (if we be not prejurdiced concerning its Difance before-hand;) and that Object which Sends forth parallel Rays we inagine to be the moft diftant that can be. In Reafori therefore, ene wootld think, that when the Rays comc from the Object converging, it Soould appear, if it weere poffible, at ${ }^{5}$ areater Diftance yet. But in this Cafe it may be asked in general, what is it that determines the ap-

8. As to the Situation, that will appear the fame as ufu-

 al, and the fame as if we look at the Object without makest the Obthe Glafs, becaufe the Eye fees the right Side of the its true SituObject ation.parent Place of the Point A, and makes it appear Sometimes nearer, and fometimes further off, and always in the fame Proportion. To wibich Scruple we can give no Anfreer from the Analogy of any Thing that has been bitherto faid, only that the Point A ourght always to appear to be at the greateft Diftance. But Experience Show's the contrary, viz. that it appears at different Diftances, according to the different Pofition of the Eye between the Points F and H, and fcarce ever (if at all) at a further Diftance than the Point A really is; but many times it appears much nearer; nay, the more the Rays which come to the Eye converge, the nearer the Image of the Object approaches. Thus, if the Eye be placed in the Point V, the Point A roill Seem to be very nearly in its true Place; if the Eye be moved backward to T, the Image will. Seem to approach nearer ; and it will appear fillnearer, if the Eye be in I or L, and So by degrees till the Eye be placed Somwhere near H, where the Object will appear very near, and berizin to vanifh confufedly. All which feem. to contradicz our Arguments and 0 pinions, or at leaft, do not very woell anree with them. And this Experiment not oizly contraditis ozar Notion, liut all other that I knowo of, equally. It feeins fo much to overthrow that antient and common one, which is more a kin to ours than any other, that the learned Tacquet was forced rhereby to renounce that Principle (ution wobich alone, almoft all bis Catoptricks depend) as uncertain, and not to be depended zupon, mobereby be overthrew his own Do-Ctrine---In the prefent Cafe there is fomething that lies deep hid in the Subtlety of Nature, which perhaps cannot be difcovered, till we anderfand the Natire of Vifion more perfcetly. Conscrning which, I conifefs, I have not yet been able to think of any Thing to flatter my felf with, musch lefs to give my felf entire Satisfaction. I therefore leave this Difficulty mith yous, and wifh you better

Succefs in folving it. Thus far the famous Dr. Barrom,

And indeed it muft be acknowledged, that there is a very great Difficulty here. For it is evident, that a Candle, the Rays coming from which, are collected together, and made to converge by a convex Glafs, however near, we, by a furprizing Miftake in our Judgement, conceive it to be, does notwithftanding affect the Eye when it is placed in I or L, exactly in the fame manner, as it would do, if thole very Rays came indeed from an infinite Diftance, as will appear by the following Obfervations.

Firft, If the Lens be fo broad, that we can fee the Canale through it with both Eyes at the fametime; though we endeavour all we can to - make our Optical Axes diverge to a diftant View, yet the Candle will never appear fingle, but always double; in fuch a manner double, that of the two Images of the Candle, the right Hand one will appear on the right Hand, and the left Hand one, on the left Hand. Whence it is moft manifeft, that the Place from whence we ought to judge the Rays come, is beyond that where the optical Axes meet, be it at never fo great a Diftance; that is, the Candle will affect the Eye in the fame manner as if it were at an infinite Diftance. See the Notes on Chap. xxxii. Art. 31.

Neither can it be faid here, that the Candle is not therefore feen double, becaufe it is feen, as it were, at an infinite Diftance ; but that it is only an accidental Thing, and effected by the Interpofition of the Glafs. For if we look through a cuncave Glafs, it does not appear double; and it may be leen fingle through a Convex-Glafs, if either the Eye, or the Candle, be fo near the Glafs, that the Rays fall upon the E.ye, not converging, but only lefs diverging; in which Cafe, fuch Glaffes are of great Ufe to render the Sight'more ditinet. Side A.

Sccondly, The Reafon of the Appearance of a Candle in this manner when looked at through a convex Glafs, is exactly the fame, as that of a Candle feen erect when the Rays are reflected by a concave Looking-Glafs. In both Cafes the Rays are converging ; in both Cafes the Object feems equally near. Now in a concave Glats, if when the Image is feen erect behind the Glafs, a Stick or a long Reed be fo put between the Candle and the Superficies of the Glafs as to fland perpendicular to the Glafs, the Image of that Stick ought to appear of an infinite Length behind the Glafs (as Tacquett has demonftrated in his Catoptricks, Book III: Prop. 22. and as the Thing it felf thows us); and yet the Image of the Candle muft neceffarily ap. pear beyond the Image of this Stick; however near therefore we, through Prejudice, judge the Image of the Candle to be when alone, it is yet evident, that it does really affect the Eye, as if there were anintinite diftance berween. And the fame muft be faid of a convex Glafs.

Now here is the great Difficulty (as the learned Perfon before-menrioned obferved) how it comes to pals, that when the Rays fall upon the Eye as if they came really from an infinite Diftance, yet the Candle does not feem (as one would expect) to be as remote as poffible, but always very near, though fometimes nearer than other, and that in a certain and conftant Proportion.
Now having confidered this Difficulty on all Sides, I at laft found out the following Solution of this furprizing Phanomenon.

Firft, Becaufe we cannot judge of the Diftance of the Candle by the meecing of the optical Λ xes (for in this Cafe, thofe Axes can never meet at all at the Candle, as was before demonftrated;) and becaufe the Judgement which we make of
the Diftance of Objects by one Eye only, is always the worft and moft uncertain, and becaufe the true Di ftance of the Candle is known before; therefore from Prejudice and Prepoffeffion, it mult always feem to be pretty near to us. To which we may add, that we cannot by our Sight perceive any Diftance, how great foever it be, if there be nothing in the intermediate Space: Thus the Body of the Sun, though we very well know, that it is at an immenfe Diftance from us, yer it feems very near; and were it not that we imagine to our felves, from the Concavity of the Heavens, a certain Radius of a Sphere, we Ghould think it fill much nearer. Thus if we look at the Sun through a very long Tube, which hinders our feeing any other Bodies, it feems to be at the End of the Tube.

Secondly, It ought alfo to appear fometimes nearer than other, and that in a certain and conftant Proportion. For when the Eye is placed near the Glafs, as in V, the Candle feems further off (as by the Laws of Opticks it ought to do) than it does withour the Glafs; now if the Eye be removed backward gradual1y, the common Refraction of the Rays will be fuch, that the Candle muft neceffarily feem larger and brighter, in the fame Proportion as the Eye recedes from the Glafs. Now this Largenefs and Brightnefs is the Reafon why it feems nearer and almoft clofe to the Eye.

And this is confirmed from hence, that if the Rays of the Candle are firft tranfmitred through a concave Glafs (that the Bignefs and Brightnefs of it may be diminikhed) and then by paffing through a convex Glafs they be made to converge (as when we look through an inverted Telefcope of two Glafles) then we eafily imagine the Candle to be at a very great, and almoft infinite Diftance.
9. But this Object will appear fomerwbat bigger, becaule the Rays VI, SI, as they enter into the Eye, are inclinedj to each other with a larger Angle, than they are bemakes the Obmakes the Objeck appeer fore they were refracted by the Glafs, fo that they feeming to come from the Places 2 and 3, imprefs an Image of the Object upon the Eye as big as if they poffeffed all the Space between 2 and 3 .
10. If the Eye be placed in L, the Rays which come to it from any Point are ftill more converging; and therefore if the Sight were confufed before, it will be much more fo now. And becaufe the Rays XL, and TL, which come from the two Points A and B of the Object, make a ftill greater Angle than SI, VI, they muft make the Object appear yet bigger. Whence it fhould feem to follow, that the Vifion fhould not be fo clear, but more obfcure; becaufe the Rays which imprefs the Image of the Object on the Eye taking up a larger Space upon the Retina, each Capillament of the Optick Nerve receive fewer of them in Proportion: However it is certain, that we can then fee as clearly as if the Image of the Object were fmaller. For there are a greater Number of Rays, which come from every Point, and which are difpofed by the Glass to reunite, that enter into the Pupil when it is fo placed as to fee the Object very large, than when it is placed where the Object appears fmaller.
11. So likewife if the Eye be placed in Y, the Object ought to appear very bright and clear, becaufe all the may make the Rays which come from any Point of the Object, and wbolly forforufall upon the whole Superficies of the Glafs do then en- Sed. ter into the Pupil; but it muft, notwithftanding this, appear very confufed, becaufe the Rays being already collected together when they are about to enter into the Eye, I are refracted afterwards by the feveral Humours of it, and fo are by that means difperfed again; fo that thofe which come from the fame Point of the Object, imprefs an Image on a great many of the Capillaments of the optick Nerves, upon which the Rays which come from other Neightouring Points imprefs their Image alfo, and this makes the Image of the Object wholly confuy ecd

1. Are vefratid fificwards) Are difperfed again when they come at GM, by which we fee the right Side of the Object. It mutt alfo neceffarily appear confufed; as well becaule the Rays which come from any Point, as A, cannot be exactly collected together at all beyond the Glafs, fo that the Eye cannot put it felf into any Figure which will reunite all the Rays that come from H ; as becaufe when the Rays really come from H as from one Point only, they fall fo diverging upon the Eye, that it cannot lengthen it felf enough to reunite them upon the Retina. The Firft of thefe Two Reafons fhows us, that in this Cafe it is impoffible for the Eye to judge what Diftance the Object is at ; and it that it feems in that Place in which we before-hand imagine it to be.
2. If
3. That it fecms in that Place) Here we meet with another Difficulty, corcerning the Place in which the Image ought to appear, aimoft as grent as the former, which Mr. Dechales propofes in this manner, Book II. Prop. 11. of his Diotricks. There is, fays he, almays a very great Difficulty in explaining the manner how the Eye fees the Place of the Object, but in this Cafe Tab. X. there is a very particular Difficalty, becarye Reafon and Experiezze do not fecm to agree togecther, nay, the Experience here is contrary to other Experiments alfo. For it is evident from Experience, that the Object $A \mathcal{B}$ is not feen in the Place of its Imaye, viz. in GrH, when the Eye is placed in M, for I bave tried That a buzdred Times, and turned the Glafes all Ways in order to find if I could posfibly make it fucceed fo. However, accor ding to Reafon, it ougbt without all Doosbt to be feen in the Place of the Image, viz. in Gry. For soben the Object $A B$ affects the Eye by the Rays of its Image, it flould feem as if it ought fo to affect the Eye as if it were in GrH. For if the Point A, for Infance, were in H, it woould fend forth Rays from H to the Eye in M; and though $2 t$ be in its proper Place viz. ing the Point A, yet it Sends

forth Rays in the Same mannes as

 if they came from the Point H; therefore it Seems as if it hourld affect the Eye in the fame manner as if it were in the Point H.To this Difficulty, this famous Perfon anfwers, That the Body AB is indeed really feen by the Eye M in the Place of its Image GYH ; but becaufe it can be feen only by one Eye at a Time, therefore by a miftaken Judgement, we imagine is to be furcher from us. Thus far He.
I have oftentimes fo ordered the Glafs, that the Object $A B$ (which ought to be a Candle) may be feen with both Eyes \mathbf{N} and \mathbf{P} at the fame Time. It it be a very large Glafs the Candle may very eafily be feen with both Eyes at the fame Time.

Having therefore made exact Obfervation of this Matter through fuch a Glafs, I affirm, that the Body AB is feen by the Eyes NP exactly in the Place of its Image GYH
For if the optical Λ xes Tab. X. be fo directed, as to meet
in the Superficies of the Glafs, the Candle will always be feen double, and in fuch a manner double, that the right Hand Image is feen by the left Eye, and the left Hand Image by the right Eye. Whence it is moft manifeft, that the Image is placed
within
13. If the Eye be fuppofed in N, the Second of there ra. How the Reatons will not take Place, and therefore the Object ought to be feen a little more diffinct, but always inverted, for the Reafon above-mentioned. And as to the Bignefs of it, we judge of that by the Largenefs of the Angle made by the Rays, which come from the Extremities of the Object, at their Entrance into the Eye, compared with the Diftance which we imagine it to be at. But it mult not here be omitted, that the Space OP and $Q R$, through which the Rays which come from each Extremity of the Object diffufe themfelves, is fo much the greater as it is further diftant from Y, where the Rays which come from every Point of the Object meet. And this make the Space $Q P$, where the Eye receives the Impreffion of the two Extremities A and B at the fame Time, to be fo much the bigger alfo; fo that there is a large Space for the Eye to move about in, where it will always fee the whole Object.
14. Hitherto we fuppofed the Object to be fo far removed from the convex Glafs, that the Rays coming from it might eafily be reunited in the Bottom of the
14. How it may be made to appear very to appear
difinct. Eye; let us now fuppofe it fo near the Glafs, that the Rays which come from any one Point of it, have no Tendency towards uniting together, after they are paffed through it, but are only made much lefs diverging than they were before : Let us fuppole alfo, the Eye to be at fuch a Diftance from the Glafs, that the Refractions which are made at the Entrance into each of the Humours be fuch, as will caufe the Rays which come from any fingle Point of the Object, to unite again in one Point upon the Retina; in this Cafe it is evident, that the Vifion muft be exceedingly diftinct. For, befides that the Rays which come from different Points of the Object, do not at all confound each other, the whole Image impreffed by them is fo large, that there is a fufficient Number of Capillaments of the Optick Nerve, to caufe the Soul to perceive a great many Particulars, which it would
within the Place of Concourfe of
the optical Axes, that is, between the
Glafs and the Eye, viz.in GYH. See
the Notes on Chap. xxxii. Art. 3I.
But further, if the optical Axes be
fo directed as to meet on this Side
the Glafs, the Candle will be feen
fingle, and manifefly on this Side
the Gla!s.

But in the former Cale, where the optical Axes were direted to a Point further diftant, becaufe the Image of a Candle does not terminate the Sight like a folid Body, and becaufe we were beforehand prejudiced concerning the true Place of it, therefore it feems to be at agreater Diftance.
otherwife have taken no notice of, if the Image had been fo fmall, that the Rays which came from two adjoining Points of the Object, had been forced to meet togerher in two different Points of one and the fame Capillament.
15. Concerning Alicro. foces.

I5. Upon this Foundation it is, that thore fmall Glaffes which we call Microfopes, are made. They confift of 1 one Glafs only, which is fo convex, that if a Flea, or any other fmall Object be placed at about an Inch Diftance from the Eye, and the Glafs be put between them, it will caufe the Rays which come from any fingle Point of fuch a fmall Object, and which diverge very much, to diverge afterwards fo little, that the ordinary Refractions of the Humours of the Eye, will determine them to unite in one Point on the Retina. By this Means the Eye which without a Glafs cannot fee any Object diftinctly which is nearer than a Foot Diftance from it, may be made to fee one which is twelve Times nearer it. From whence it follows, that the Diameter of the Image which this Object impreffes upon the Retina is twelve times larger, and confequently, that the whole Superficies is a Hundred and Forty Fcur times as large, as it would be, if the Object were at a Foot Diftance; wherefore fince it extends it felf upon a Hundred and Forty Four times as many Capillaments of the Optick Nerve as it would otherwife do, the Object cannot but be feen very diftinctly.
16. How 16. Let us now examine a concave Glafs, fuch as coneave that in the Figure CDEFGH, the Property of which is, according to what was before faid, to make the Rays which it receives from any fingle Point of an Object, to become more diverging than they were before they paffed through the Glafs. Thus the Rays which come from the Point A, and fall upon that Part of the Glafs marked VX, fpread themfelves after they are paffed through it, from R to Z ; and thofe which come from the Point B, and fall upon the fame Space VX, extend themfelves through the Space YT. Further, it is alfo the Property of a concave Glafs, fo to incline the Rays, which come from two different

[^60]
Chap. 33. of Natural Philosophy:

Points of the Object, to each other ; that when they meet together, they make a lefs Angle than they would do, if they had not paffed through fuch a Glaifs. For inftance, the Ray MI which comes from the Extremity of the Object A, and the Ray LI which comes from the other Extremity B, make fo fmall an Angle, viz. MIL, that they feem to come from the Places marked N , O .
17. Whence it follows, that if the Eye be placed in $\mathrm{I}_{17 \text {. How it }}$ and look upon the Object $A B$, it will fee it confufedly : may make the
 diverging, that the Refractions of the Humours of the Eye cannot make them unite in fo many Points upon the Retina.
18. However, there may be fome Eyes fo much long- 18. That it er and more gibbous than ordinary, as to reunite the Rays which they receive from any fingle Point of a diftant Object, before they come to the Retina, fo that fininelty. they can fee only near Objects dittinctly; they therefore who have fuch Sort of Eyes as thefe, may make good ufe of a concave Glafs to fee diftant Objects diftinclly with; becaufe by this Means the Rays which come from any fingle Point of the Object are made fo diverging, that the large Refractions made by the Humours of fuch Eyes, do not reunite them before they come at the Retina.
19. If an Eye of the ordinary Figure be placed at a greater Diftance from the Glafs, as at P, it will fee fomewhat more diftinctly, becaufe the Rays which fall upon the Pupil from any fingle Point of the Object are lefs diverging than they were in I; and on the other Hand, an Eye too long or too gibbous will fee it fo much the more confufedly as the Point P is further from the Glafs, becaufe the Rays which come from any fingle Point of the Object, being lefs diverging, the Refractions made in the Eye, determine them to meet before they come to the Retina.
20. But whatfoever the Figure of our Eyes be; whe- 20. That it ther they are fitted to fee Objects that are near, or fuch Shews the Obas are at a Diftance; whoever makes ufe of fuch a jeitzinitstr
Glafs will fee the Object in its true Situation; for the Rays which caufe us to fee the right Side of the Object, come to us from the right Side; and thofe which caufe us to fee the left Side, come from the left Side.
21. That it makes it appearnearer to 3ts.
22. That it makes it appear lefs. of the Object are feen by Rays which make a leffs Angle than they would make without a Glafs, it follows, that it muft appear much lefs.
23. That it 23. Becaufe the Rays which come from any Point makes it look of the Object are made more diverging by paffing
equally clear. through a concave Glafs, it follows, that fewer- of them can enter into the Pupil, than if they had not paffed through the Glafs; however the Vifion ought ,not to be the lefs clear upon this Account; becaufe this is made good by the Image being impreffed on a lefs Space of the Retina, fo that every Capillament of the Optick Nerve is fufficiently fhaked to caufe us, when we look through fuch a Glafs, to fee the Object as clear as when we look on it without a Glafs.
24.Thatit 24. To what has been hitherto faid concerning the makess alarge concave Glafs, we may add, that the Space RT, which Space for the contains the Rays that come from the two Extremi-
$\delta_{b j e c t}$ to
be feen in. ties of the Object, being very large, it follows, that the Eye may fee the Object entire in any Part of this large Space.
25. Concern- 25. One of the beft Inventions of our Age, is that of ingTelcffopes. Telefocopes. For by the Help of them we have not only difcovered fome Particulars in the Stars, which were not obferved before, but they fhow us alfo a Multitude of new Stars in the Heavens, which we cannot fee without them, nor fhould we ever have come to the Knowledge of them otherwife. They were indeed firft difcovered by Chance; but the Invention appeared fo furprizing, and fo ufeful, that the greateft Genius's have laboured hard to bring them to the higheft Perfection poffible. I cannot therefore forbear explaining the Na ture of them in this Place; and the fo doing will very much confirm all that has been hitherto faid about Vifion. They confift commonly of two Glaffes, fixed to each End of a Tube: That Glafs which is at the End next the Object, and is for that Reafon called the Ob -ject-Glafs, is a little convex, and the other Glafs which

Chap. 33. of Natural Philosophy?

is at the End of the Tube next the Eye, and is therefore called the Eye-Glafs, is on the other Hand, very concave, that is, much thinner in the Middle, than at the extreme Parts.
26. The Object-Glafs caufes all the Rays which come 26. The Profrom every fingle Point of the Object, to unite together very nearly in as many different Points, on a Superficies which we are to fuppofe on this Side the Glafs, at a greater or le f_{s} Diftance from it, according as the Glafs is more or lefs convex; now becaufe the Rays which come from different Points of the Object, crofs one another as they pafs through the Glafs, it is eafy to conceive, that they paint fuch a Sort of an Image upon this Superficies as we have before fhown they do upon the Retina, and that it is fo much the larger, as the reuniting of the Rays, caufes it to be at a greater Diftance from the Glafs : If therefore the Bottom of the Eye were put in the Place of this Superficies, and it were poffible for the Humours of it not to make any Refractions; we fhould have a very large Image impreffed on the Retina, by Means of this fingle Glafs, and it would fall upon to great a Number of the fmall Capillaments of the Optick Nerve, which would receive diftinctly the Impreffion of every fmall Part of the Object, that it would be impoffible but that the Vifion mult be very diftinct.
27. But becaufe the Humours of the Eye cannot be 27. The Prohindred from caufing the ufual Refractions, they muft ${ }^{\text {perty }}$ of the neceffarily fo refract the Rays which come from every Point of the Object, and which had before a Tendency to unite together, that they will unite before they come at the Retina, and then feparating again, will imprefs a confufed Image upon that Tunick. Now the Eye-Glafs is fo fitly placed between the Object-Glafs and the Place where it would make the Rays meet; that it caufes thofe which come from any Point of the Object converging, to become parallel, or rather a little diverging; but yet it does not hinder the Rays which come from different Points, from being as much difperfed as they were when they croffed each other in paffing through the ObjectGlafs. And thus the Refractions neceffarily made by the

Humours of the Eye, inftead of being injurious, as they were without this Glafs, become very uffefl with it; for they unite thofe Rays which this Eye-Glafs difperfed; and by this Means the Image which the Object impreffes on the Retina becomes perfectly diftinct, and at the fame Time very large. Whence it follows, that the Object is feen diftinctly and I fo much the bigger as the Rays which come from any one of thefe Points, are lefs diverging, and make us think it at a greater Diftance.
28. Why the fe Glaffes, the longer they Glaffes the cies of Glaffes for Telefcopes, is, 2 that of an Hyperbo-
longer they
are, make the $l a$, or any fuch like Figure, and not the Curvature of a Sight To much tron nere ebfaure.
28. The beft Curvature that can be of the SuperfiSphere. But Workmen have not yet been able to make

1. So much the bigger as the Rays which come from any one of these Points are lefs divergings, and make zes think it at a greater Diffance.)

That is, by how much the Rays of every Pencil being lefs difperfed, make it appear further off. For the further the Object feems to be from us, the more do we neceffarily imagine the Pencils of Rays, which crofs one another as they pals thro' the Object-Glafs, to divaricate, that is, the Object feems fo much the bigger.
2. That of an Hyperbola: or any fuch like Figure, \&̛c.) Cartes took a great deal of Pains about thefe fort of Figures, and about the manner of polifhing Glaffes, but with no great Succefs. For it is evident, that Spherical Glaffes, as they can be more eafily and more accurately made, than Elliptical or Hyperbolical ones; fo are they to be preferred before fuch upon this Account, becaufe they do more exactly retract the Pencils of Rays which are out of the Axis of the Glafs. And indeed, it is not to be afcribed to the Unfitnels of the Figures of the Glaffes, but, to quite other Caufes, that Telefcopes cannot be made abfolutely perfect and compleat. The Two Principal of which Caules are thefe.

Firft, The unequal Refraction of the Rays themfelves; (See the Notes on Chap. xxvii. Art. 52.) by which means neither the Eye-Glafs (which is Convex) can be made of Spheres fmall enough to magnify the Ob ject; nor the Object-Glafs of a fufficient Aperture, to render the Object bright and diftinct, but every Thing will immediately be tinged with Colours, and confounded by the unequal Refraction of the Rays. For the eminent Sir Ifaac Newton has Shown, that the Difference between the Refraction of the leaft and moft refrangible Rays, is about the Twenty feventh Part of the whole Refraction of the mean refrangible Rays; and that the Focus of the moft retrangible Rays is nearer to the Object-Glafs than the Focus of the leaft refrangible ones by about a Twenty fevench Pare and a Half of the whole Diftance between the Object-Glafs and the Focus of the mean refrangible Rays. (Opt. p. 74.) And therefore the greateft Errours which arife from the Spharical Figze of the Glafs, are very much lefs than the Errours which arife from the unequal Refraction of the Rays themfeives; nay, in fome Cafes, the Proportion is as great between them, as 1200 to I (pag. 8g.) From whence it abun-
their Glaffes of any other Curvature but that of a Sphere, of which they take fo frall a Part, that it does not fenfibly differ from an Hyperbola. But then there is this Inconvenience attends it, that there does not fall fo many Rays upon it from any one Point of the Object, as there would do if the Glafs were larger; and confequently all the Rays which come from the whole Object, and which fpread themfelves upon a large Portion of the Retina, fhake but a very few of the Capillaments of the Optick Nerve; and this is the Reafon why we fee Things more obfcurely, than when we do not ufe fuch a Glafs; and the longer fuch Glafs is, and the fewer the Rays are which come upon the Pupil from any Point of the Objeit, fo much the weaker and more obfcure muft that Object appear.
abundantly appearing, that not the Spherical Figgres of the Glaffes, but the different Refrangibility of the Rays themfelves, is the Caufe why Telefcopes have not hitherto been made abfolutely perfect and compleat, and that there can be no Remedy for this Incovenience by any way figuring or polifhing refracting Glaffes; this excellent Perfon, at length invented, and agreeable to Experiments, propofed the manner of making a Telefcope which Thould caufe the Object to be feen by Re flexion: Concerning the Conitruition and Ule of which Inftrument, See Opric. pag. 95.

Secondly, If the Theory of making. Telefcopes could at length be futiy brought into Practice, yet there would be certain Bounds, beyond which Telefcopes conld not perform. For the Air through which we look apon the Stars, is in a perpetual Tremor; as may be feen by the tremiulous Motion of Shadows caft from hich Towers, aud by the twinkling of the fised Stars. But thefe Stars do not twinkie when viewed through Telef-
copes which bave larger Apertures. For the Rays of Light wohich pals throutg diverfe Ports of the Apertare tremble each of them apart, and by means of their various, and fometimes contrary Tremors, fali at one and the fame Time upon different Paints in the Tottom of the Eye, and thcir trembling Motions are too quick aud confufed to be perceived feverally. And all thefe illisminated Points confitute one broad lucid Point, compofed of thofe many trembling Points confufedly and inSenfilly mixed with one another by very hoort and fwift Tremors, and thiereby caufe the Star to apear broader than it is, and withost any Trembling of the Whole. Long Telefcopes may caute Objects to appear brighter and larger than fhort ones can do, but they cannot be fo formed as 10 take abway that Confryion of the Rays which arifes from the Tremors of the Atmpiphere. The only Remedy is a moft forene and quiet Air, fuch as may perhaps be fornid on the Tops of the higheft Mountains above the grofSer Clouds. Newt. Opticks p. 98.

C H A P. XXXIV.

Of Looking-Glafes:

1. Ofthe different Sorts of LookingGlases.
2. The com- 2. Each Sort of Looking-Glaffes has indeed its parmon Property ticular Property or Manner of reprefenting the Object; of all Sorts of but in this they all agree, that they fo reflect the Rays
Looking-LookingGlarjes.

BESIDES plain Looking-Glaffes, which are every where ufed, there are two other Sorts, viz. Convex and Concave ones, not to mention thofe which are compounded of thefe three Sorts, which are capable of being infinitely diverfify'd. of Light, that the Angle of Incidence is equal to the An- gle of Reflexion, and that the reflected Ray is not in the leaft turned afide, either to the right Hand or to the Left; that is to fay, I the incident and reflected Rays are always in the fame Plane which is perpendicular to the Superficies of the Glafs; whence it follows, that though the vifible Object fends forth from every Point a Multitude of Rays which are reflected by the whole Superficies of the Glafs, yet a determinate Number of them only can come to the Eye when it is fixed in a certain Place.

Abstract

1. The incident and reflected Rays are always in the fame Plane which is perpendicular to the Superficies of the Glafs) This Property wonderfully perplexed the famous Dr. Barrow; yout woill not eafily find any good and clear Account of this Matter among/t the Writers of Opticks; almoft every Thing that they alledge with relation to it, is either begying the firft Principle, or clife labozrs munder fome incomprehenfible Obfcurity; nor do I much woonder that this תhoztld be the Cafe of thofe who always confider a Ray of Light as one centinued Areight Line; wohich if granted, I can fcarce believe it pofible to affign any good Reafon for this Thing. I therefore think that a Ray of Light is not a mere Line, but a Bocly endued with all the Dimenfions; fo that it may be cylindrical or prifmatical, \&c. Lecl. I. Sect. II. But there do not

feem to be any neceffity of recurring to the Figure of the Rays; it is all one whether they be cylindrical or prifmatical, Tab. II. whether they be folid Bo- Fig. 6. dies or indivifible Lines. For let GBL be the Superficies of the Earth (which I fuppole to be plain and fmooth) A the North, I the South, AB a Ray of Light. Now it is evident, that this Ray of Light is carried with a double Determination, the one AG downwards to the Earth, the other AH directly to the South ; the firft Determination is refifted by the Superficies of the Earth, the orher is not ; the Ray therefore ought to go on directly to the South with this Determination, that is, in a Plane perpendicular to the Superficeies of the Earth; nor can it turn towards the Eaft in an oblique Plane.
3.This
3. This being fuppofed, let AB be a plain LookingGlafs, by Means of which the Eye C fees the Object DE; having drawn from any Point at Pleafure, fuppofe D, the Line DIL perpendicular to the Superficies of the Glafs, we fhall fhow that this Point D ought to be feen in the Point L of this Perpendicular, fo that the Diftance IL, which we imagine it to be at behind the Glafs, fhall be equal to the Line ID; ${ }^{1}$ for it is eafy to demonftrate, that the Rays DF, DG, by which the Point D affect the Senfe, are fo reflected in the Lines FC, GH, that they enter into the Pupil CH , as if they really came from the Point L ; fo that this diverging of the Rays caufes the Eye to put it felf into fuch a Shape, as gives occafion to the Soul to imagine that it fees the Object really in the Point L.
4. And as the Point D was taken at pleafure, what has been faid concerning that, ought equally to be underftood of all other Points of the Object; and therefore it is cvident, that when we look upon an Object in a plain Looking-Glafs, the whole Image ought to appear as far bebtud the Glass, as the Object is placed before it.
5. It is further evident, that this Object ought alfo to appear of the fame Bignefs, as if it were really placed in LM : For the Space which the Image feems to take up, is comprehended between two parallel Lines which are at the fame Diftance from each other as the Extremities of the Object are.
6. Laftly, This Object ought fo to appear in the Look-ing-Glafs, that the upper Part fhould be feen above, and the right Side on the right Side, and fo of the reft. Thus the Part D, which is higher than E being feen by the Rays of Incidence DF, DG, and by the reflected Rays FC, GH, which feem to come from the Point L ; and the lower Part E being feen by the Rays of Incidence EN, EO, and by the reflected Rays NC,OH,

[^61]which feem to come from the Point M; we refer the Senfation which we have of the Point D to the Place L, and that which we have of the Point E to the Place M, which is lower than L.
7. That it is the fame Thing whether we look upon the Glafs with one Eye or with both.
7. What has been faid concerning one Eye, ought equally to be underftood of the other. And indeed if we fuppofe the Spectator principally attentive to look upon the Point L, it will eafily appear, that his two Optical Axes, will be fo inclined to each other, that they will feem to meet in the Point L. Whence it follows, that the Rays which come from every Point of the Object to enter into one of the Eyes, feem to come from the fame Points beyond the Glafs, from whence the Rays feem to come which caufe every Point of the Object to be feen by the other Eye.
8. That a 8. As to a convex Looking-Glafs, fuch as that in the convex Look- Figure reprefented by ABC, by Means of which the Eye ing-Glafs orght to make the Object apD fees the Object EF, 1 it is eafy to apprehend, that it pear at a lefs Diftance bebind the Glafs, than it is on this Side.
Tab. IX.
Fig. I. fo reflects the Rays which fall upon it from any Point of the Object, fuch as EB, EG, that the reflected Rays BD, GH diverge juft as much as if they really came from the Point I, which is at a much lefs Diftance behind the Glafs than the Object is before it: And this is the Reafon why we fee the Image much nearer than when we look upon a plain Looking-Glafs.
9. That it 9. Further, the Point L from whence the Rays MD, ought to apgear maller. $\mathrm{NH}_{\text {, feem to come, by which we fee the Point } \mathrm{F}, 2 \text { is }}$ fo near the Point I, that IL appears much lefs than EF, that is, a convex Looking-Glafs makes the Object appear much lefs than it really is.
10. That it onght to appatar in its truc' Sittuatis.
10. But though in this a convex and plain LookingGlafs differ from each other, yet they agree in another Particular, viz. that they both make the Object to be feen in its true Situation, as appears from hence, that

> I. It is ealy to apprchend, \&-c.) This may eafily be demonftrated, if we draw a fraight Tab, IX. Line BG reprefenting Fig. I. a plain Looking-Glafs, the Situation) wath compare it (as to Tangents of the Points B and G. 2. Is fo near the Point I,) There are two Reafons of this. Firf, BeGaufe the Image in this Glafs, by
reafon the Rays of every Pencil are more difperfed, is not fo far diftant from the Vertes of the Ancle of Vijion as in a plain Look-ing-Glafs. Secondly, Becaufe this Angle of lifion is therefore lefs, becaufe the Portion of the Glats upon which the Rays that are reflected to the Eye, fall, is lefs than in a plain Looking- Glafs. Point E are higher than the Rays FMD, FNH, by which it fees the Point F, which is the lower Part of it.
ri. As to Vifion made in looking upon a concave Looking-Glafs, it may be diverlify'd feveral Ways according as the Eye and the Object are in different Pofitions. Let us fuppofe a concave fpherical LookingGlaif, whole Center is about the Point T; and let us imagine in the firt Place, that by 'Means thereof the Eye D fees the Object EF which is pretty near the Superficies of it. This being fuppofed, the Rays EB, EG which come from the Point E, are fo reflected to the Pupil, that BD, GK diverge but very little, and feem to come from the Point H , which is at a much greater diftance beyond the Glafs, than the Object is on this Side of it. I And this makes us refer the Image of ir to a greater diftance than if we look on a plain Looking-Glals, and to a ftill greater than when we look on a convex Look-ing-Glafs.
12. As to the Rays which come from different Points of the Object, they are in this Cafe fo reflected, that thofe which affect the Senfe from the upper Part of the Object, are higher than thofe which affect the Senfe from the lower Part of it; thus the Rays BD, GK, which caufe the Senfation of the Point E , are higher than the Rays ID, LK, which caufe the Senfation of the Point F; and the ee Rays ID, LK, feeming when they enter into the Pupil as if they came, from the Point M : are the Caufe of feeing the Point F as if it were in M. And becaure HM is much bigger than EF, it follows that the Object ought not only to appear in its true Situation, but alfo much bigger than it really is.
13. The Rays EN, FO, as they go towards the Glafs divide more and more from each other; wherefore if they be continued backwards, they mult meet together fomewhere in the Point P, and afrerwards dividing again that which was uppermof, will be lowermoft, and
11. Why a concave Look. ing-Glaf; makes the Object appear at a faroice behind it, than it is at before it: Tab. IX: Fig. 2. that which was lowermof will be uppermoft; whence we cannot but conclude, that if an Object be in QR ;

1. And this makes ues refer the the concave Looking-Glafs here is ${ }^{-}$ Imare, \&rc.) See the Netes on Ckap. xxxiii. Art. 7. for the Cafe of the:e.
it muft appear inverted; but becaufe the Rays which ought to affect the Senfe from any fingle Point of it, fall in fuch a manner upon the Superficies of the Glafs that as they are reflecied to the Eye, they crofs one another in feveral Places between the Glafs; and fo cannot be reunited in one Point upon the Retina, therefore the Vifion muft be very confufed.
2. How it may be that the Puppil onty can be feen.

14 If the Eye be placed exactly in the Center of a concave Looking-Glafs, it can lee nothing but the Pupil; for thofe Rays only which fall perpendicularly on the Spherical Superficies, are reffected to the Center; and thofe Rays only which come from the Center fall perpendicularly upon the Superficies; wherefore the Rays which go from the Pupil and fall upon the whole Superficies of the Glafs, return from thence to the Eye again, which muft therefore fee the Pupil fpread all over the Glafs.
15. How the Object may appear very large.

Tab. IX. Fig. 2.
15. If the Object EF continues in its Place, and the Eye be moved to X, between the Rays BD, GK, prolongued; it is evident, that it will ftill fee the Point E by means of fome of thofe Rays which it faw it by before ; but it will not fee the Point F, by Means of the Rays ID, LK, which came to it from the Part IL of the Looking-Glafs; inftead of which, thofe which fall from F upon Y, and go from thence to X will make the Point F to be feen, and confequently it will feem to be fomewhere in Z , and fo the Object will appear as large as HZ .
16. How it 16. If the Eye continues in D, and the Object EF be ma.ya appear abfoittely confufed. removed backward to P, the Rays which come from every Point of it, and fall upon any Part of the Glafs as BG, will be lefs diverging than they were before. Wherefore after Reflexion they will become converging, and more difpofed to unite, when they enter into the Eye, than they ordinarily are, and fo muft really unite before they come at the Retina, which will make the Vifion confuffed. But it will be ftill more confufed if the Eye be in that Place where the Rays which come from every Point of the Object meet together again ; for thefe Rays at their Entrance into the Eye will begin to be ${ }^{\mathrm{I}} \mathrm{fe}$ -

[^62]Chap. 34. of Natural Philosophy.
parated by Refraction, and will be feparated more and more by the Humours of it.
17. If the Obje?t remain in P, and the Eye be removed a little from the Place where the Rays which come from cvery Point of the Object reunite, the appearing Rays when they enter into the Pupil, will diverge too much; wherefore becaufe the Eye cannot lengthen it felf enough, the Object will appear confufed here alfo.
18. But if the Eye be moved fo far backward from that Place where the Rays reunite, that the Rays which enter into it, be not too much diverging, the Vifion ought then to be dijfinct ; and what is here very remarkable, and the moft furprizing Effect of a.concave Looking-Glafs, is this; that becaufe we are accuftomed to refer our Senfation to the Place from whence the Rays which affect the Eye from every Point of the Object feem to come, therufore the Image muff appear between the Glafs and the Eyc; fo that if a drawn Sword be prefented before the Glafs, we fhall fee the Blade come out from the Glafs, and grow longer and longer as we approach nearer to it; becaufe the Rays which come from every Point of the Object, the nearer it is, are the lefs inclined to each other after Reflexion, and therefore meet together at fo much the greater Difance. r
19. It

1. The Phanomena of a concave Looking-Glass, may be very properly reduced to hive Cafes.

Firft, Let the Arrow or the Condie EF be near the Glafs. Now becaure the Pencils
Tab. IX. EBGKD, FILKD do
Fig. 2. not crofs each ocher, wherefoever the Eye be placed, whether it be near or at a diftance; therefore the Image HM ought always to appear ereft. And becaule the Rays of thofe Pencils are reflected, not converging to each other, but only lets div erging, therefore the Candle ought to appear to be at a certain Diftance beyond the Glafs.

Secondly, Let the Candle be in the very Center T. Then becaufe all the Rayo fall perpendicularly
upon the Glafs, they
nuft neceflarily be all Tab. IX. reflected to the Center Fig. 2. it Celf ; therefore where ever the Eye is placed, out of the Center or any of the lizes tending to the Center, it is cvident, that i: cannot fee the Candle at all in the Glafs.

Thirdly, Let the Eye be in the Center T. Then becaufe no Rays but thofe which fall perpendicularly are reflected to the Center; therefore the Eye can fee nothing but its own Image fpread all over the Glafs.

Fourthly, Let the Candle $2 R$ be . further difant from the Glays, arid the Eyc $K D$ firther diffant alfo. Then becaufe the Pencils QO, RN, crofs each other, it is evicent, that T 3
19. That Ob- 19. It may be obferved here, that they have been jects do not very much miftaken, who have affirmed, that vifible ${ }_{m}{ }^{\text {painte}}$ thees nir the Cbjects paint their Images upon the Superficies of LookingSuperficies of Glaffes; for every Thing there is fo confufed, that there is LookingGlaffes. no onc Part of the Glaits but receives Rays from all Parts of the Object at the fame Time; and indeed it is certain that all Objects which we fee by the Help of a Looking-Glafs, do not imprefs their lenage any where clie but on the Bottom of the Eye, unlefs when we fee them by Means of a concave Looking-Glafs, under the Circumitances mentioned in the foregoing Articles; and in that Cafe it is certain, that the Image impreffed by
the Image of the Candle ought to appear inverted to the
Tab. IX. EyeND. And becaufe Fig. 2. the Rays of every Pencil are reflected cunverging, and after meeting fomewhere in a Focus, go from thence diverging to the Eye; therefore the Image will not appear beyond the Glafs, but on this Side of it, in that Focus. So likewife, in another Figure, becaufe the Pencils GD, BC crofs each other, it is

Tab.XVII.
Fig. 3 . evident, that the Imaige of the Candle G13 ought to appear inverted to the Eye in Q; ard alfo on this Side the Glafs, and not beyond it, becaule the Rays of every Pencil crofs one another in a Focus, as wats before explained. But why in this Cafe we thould not imagine it to be very near, (unlef's we look very intently upon it) when it is really very near, Sce the Notes on Chap. xxxiii. Ayt. 12. for the Cafe is the fame here as in the Perfpective Glafs there.

Fifthly, Let the Candle GB be at fome Difance from the Glafs, and the Eye M very near it.' Then becaufe the Candle GB
Tab.XVII. is feen by other PenFig. 3 . cils CHM, 13CM which do not crofs each other; it is manifeft, that the Image of CB nught to appear erect again, but more confufed.

But in this Cafe it is particularly to be obferved, that the Eye M hath no way to judge either in what Place, or at what Diftance behind
the Glafs the Image of
the Candle ought to ap- Tab.XVII. pear; for fince the Kays Fig. 5. of every Pencil converge towards each other, that is, do not come from any given Point, but as it were from an infinite DiItance, to enter into the Eye; and fince thofe reflected Kays BM, SM do not meet with their refpective Perpendiculars of Incidence DT, FL, (from which meeting the Place of the Image is always determined) there remains nothing to judge of the Diftance of the Image by but mere Prejudice.

It was very ill * Catropticks therefore in * Tac- Book III. quet, after he had fo Prop. 30. well demonitrated under this Head; that the reflected I mage in any Looking-Glafs is always Secr in the Place where the reflected Rays meet with their Cathetus of Incidence, (the Cuthetus of Incidence is a Line drawn from any Point in the Objcet perpendicular to the Glafs) to except this laft Cafe as contradicting this Axiom; whereas it is no ways contradictory to it. For when the Eye is in fuch a Pofition, as to receive the reflected Rays before they meet with their Catheti of Incidence, the Image cannot be feen where they meet, becaufe they don't meet any where ; neither is it feen in any other certain Place ; but it affects the Eye as if it came from an infinite Diftance; in the fame manner as when the Rays come converging out of a Perfpe-ctive-Glafs. See the Notes on Chap. xxxiii. Ayt. 7°
the

Chap. 34. of Natural Philosophy.

the Object, is not upon the Superficies of the Glafs, but in the Air, in the Place where we imagine we fee the Object, and where the Rays which come from every Part of it, are united after Reflexion. I

1. Befides fuch Looking-Glaffes, where we look upon one 'Superticies only, we may alfo confider Perfpe-ctive-Glaffes, or certain clear Glafies, as Looking-Clafles confifting of two Superficies; according to the Variety of which, there is alfo a wonderful Variety of reflected Images. For not only the firt Superficies which receives the incident Rays out of Air, but alfo the fecond Superficies which receives the Rays going out of Glafs into Air, exhibits a reflected Image, as may be feen by placing a Candle before fuch a Glafs.

Firft then, let a Candle be placed before a Glafs which is plain on borh Sides; then the Images réflected by each Superficies, will both be feen erect and exactly like each nther, excepting only, that That which is reflected by the farther Superficies will feem a little more obfcure, becaufe a great many of the Rays have alrcady been reflected by the firft superficies.

Secondly, Let the Glafs be plain on the one Side, and convex on the other, then if the Candle be plaved before the convex Superficies, the Image will be reflected erect by each Superficies (unlefs the Glafs be of fuch a Thicknefs, and the Fore-fide of it fo convex, that the Kays in paling through it are made converging, and after having been reflefted by the plain Superficies, and paffing a fecond Time through the convex Side, meet in a Focus before they come to the Eye ; in which Cafe the Image from the latter plain Superficies will be feen inverted) but that which is from the firft and convex Superficies, will appear lefs.

But if the Candle be placed before the plain Superficies, then the Image reflected from the firlt Superficies will be erect again, and that from the further Superficies, which is concave within, will be reflected inverted, and will alfo reem to bo much nearer to the Eye, than that from the firlt and plain Superficies.

Thirdly, Let the Glafs be plain on one Side, and concave on the other. Then if the Candle be placed before the concave Superficies, the Image reflected from the firf Superficies will be inverted, and that from the further one, erect. But if the Candle be placed before the plain Superficies, the Images reflected from each Superficies will be ereEt, but that from the further one, which is convex within, will appear lefs.
Fourthly, Let the Glafs be concave on one Side, and convex on the other. Then if the Candle be placed before the concave Superficies, the Images by each Superficies will be inverted; but if before the convex Side, they will be borh erect.

Fifthly, Let the Glafs be convex on both Sides. Then the Image of the Candle placed before it, will always be reflected erect by the firft Superficies ; and always inverted by the other Superficies, which is concave within.

Laftly, Let the Glars be concave on both Sides. Then the Image of the Candle placed before it, will always be reflected by the firft Superficies inverted, and always crect by the latter which is convex within.

C H A P. XXXV.

A Solution of fome Problems concerning Vifion.

1. Of the Rays which me fee dart seppards and domnioards from a Canslep

T${ }^{1}$ HOU GH I have been very large upon this Subject of Vifion, yet I doubt not but that I have paffed over a great many curious Queftions, the Solution of which, may perhaps be fomewhat difficulc to thofe who are not well acquainted with our manner of Explication. That this Treatife therefore may be as little defective as poffible, and to fhow the Ufefulnefs of it, I fhall here propofe fome of there Sort of Queries; and leave the Excellency, at leaft the Truth of our Hypothefis to be judged of, by feeing how eafy it is to refolve them. And Firt, I ask; Whence it is, that when we look upon a ligbted Candle at a little Difance witt our Eyes winking, there feem to come Rays of Ligbt from the Flame of the Candle, and dart upwards and downwards into the Air? And whence is it alfo, that if an opake Body be put between the Eye and the Place-where we fee the uppermoft Rays, we fitl continue to fee them, and on the contrary, ceafe to fee the lowermofe
Tab. IX. Rays? In order to underftand the Rearon of thefe Phænomena, let us confider the Eye A, the Eye-lids of which H, I, are fo near each other, that there is only a very natrow Paffage left, through which the Rays which come from the Candle BCD pafs to imprefs its Image on the Part of the Retina EFG in the manner above explained: Further, it is to be obferved, that the Parts H and I (which are ufed to touch one another when the Eye is clofe fhut,) are fo fmooth, that they refemble two fmall convex Looking-Glaffes, which rellect the Rays of Light falling upon them, to-

[^63]are refracted by the Humour which fticks to the out-fide of them; in explaining all the reft of this Phenomenon; the Reafon is the fame.

Chap. 35. of Natural Philosophy.
wards the Retina, to the Parts of it EK, FL, which otherwife would not have been affected but by Objects which are about BM and CN. Wherefore the Impreffion made upon EK caufe the Appearance of bright Rays, which we refer to the Place BM, and the Impreflion made on GL caufe the Appearance of the Rays which we imagine to be in CN. But that which is -moft worthy of Obfervation here, is, that the Part of the Flame B, which illuminates the lower Eye-lid I by Rays which are reflected to the upper Part of the Retina LG, caufe the Appearance of the lower Rays CN ; wherefore if an opake Body $\mathrm{O} P$ be put between the Eye and upper Part of the Flame, we fhall ceafe to fee the lower Rays, and continue to fee the upper ones, becaufe they are feen by Means of the Rays CH , which come from the Bottom of the Flame, and which are not intercepted. And all the Difference that we fhall find in thefe upper Rays, is this; that whercas before they feemed to be in BM, they will now feem to be on this Side the opake Body OP. But when the Eye is open as ufual, that is, when the Eyclids come no nearer than S and T, we ought not to fee there Rays of Light; becaure the Rays which fall upon thofe Places which we now compared to LookingGlaffes, enter but a little Way into the aqueous Humour at furtheft, and are hindred from going any further by the Uveous Tunick.
2. Whence is it that when a Fire-brand is turned round, 2. Of a Firewe See a Circle of Fire tbrough which it pafed ? The Rea- brand turreca fon of this, is, becaufe the Fire-brand makes a circular Impreffion upon the Retina, and the Motion of it being very quick, fome of the Impreffion made at firt remains till it returns again.
3. From this Phenomenon we may draw this Conclufion, that though Vifion is made in an Inftant, it does however continue fome fhort Space of Time. yound. however continue fome hort space of Time.
4. Whence is it that a Camnon-Ball, or any otber black Body, paffung very quick before a white Wall, camnot be cannot at all perceived at all? The Reafon is, becaufe a black Bo- dee fies mbicho dy making no Impreffion upon the Eye; the Ball in- move very terrupts the Rays of Light reflected from the Wall, fo grick. very little, that the Motion which thefe Rays excited in the Eye juft before, is continued in it for fo flort a Time.
5. IWhy fome

Perforis can fee Objects difincilly, at a certain Difance only.
5. Why do fome Peifons fee difinizily at a certain Difance only, and fee confufedly at a greater or leffer Diftance? It is I becaufe they are fo accuftomed to look at that Diftance, that the Mufcles by which the Figure of the Eye is altered, are grown ftiff, and uncapable of performing their Office; in the fame manner as the other Mufcles of the Body are uncapable of moving the Members of it, if they have not been exercifed for a long Time. To which we may add; that the Tunicks which contain the three Humours of the Eye, are fo hardened, that they will not fo eafily yield as before.
6. of Vifion 6. Whence is it that an Object which appears confu:breuthg a Hole fed, when we look at it too near, may be feen very disidade pith a finnefly at the fame Diftance through a Hole made with a
Needle. Needle. Needle in a fine Card, or a Piece of Paper? The Reafon is, becaule the Eye then receiving a lefs Quantity of Rays from every Point of the Object, each of them paints its Image but upon a very fmall Space, fo that they which come from two neighbouring Points, do not confound each other's Actions. 2
7. Whence

1. Becanfe they are fo accuffomed, \&c..) This often happens to fome particular Sort of Workmen, as Engravers, éc. and ought to be look'd upon as a particular Sore of Diftemper.
2. It may alfo here be enquired; Why a very fmall opake Body fufpended in the Middle of an Hole between the Eye and a great many Lights, is musltiplied jo, as to be fecn before eviery Light? 'The Reafon is, becaufe the Rays crofs one another in that Hole, and are intercepred by the fmall opake Body. Let us imagine Tab. VI. GHILN to be the Eye, PEDFQ the fmall Hole in the Paper, HD the fmall opake Body furpended in the Middle of the Hole ; and A, B, C, three Candles. This being fuppofed, the Body HD will intercept the Ray BO; then the Shadow of that BOdy will fall on O , and therefore the Body it felf will be feen in B; fo likewife it will intercept the Ray AX; fo that its Shadow will
fall upon X, and therefore it will be feen in A. Laftly, it will alfo intercept the Ray CY, whofe Shadow will fall on Y , and therefore it will be feen in C. Neither is it neceffary that an opake Body Thould be fufpended in a Hole at all: For fince the Rays that come from a great many lucid Bodies, crofs one another in the Tanica Cornea, if you fix your Eyes upon a Fire of burning Coals, and put a very fender Iron-rod clofe to your Eye, it will be grearly multiplied, and feen as it were before every Coal.
Secondly, Why an Object is fecn double woben looked at with one Eye throust two Holes made in a Paper clofe to cact other? In order to account for this Effect, it is to be obferved, that the Objects are never feen double, but when all the Kays of the fame Pencil, neer together before they come to the Bottom of the Eye, or after they are pafied beyond it. In order to have thefe Rays meet together be-
3. Whence is it that thofe who bave been couccoed for 7 . Why they Cataracts, can fee but consfufedly afterwarrds, and why do wob have boen they want very large convex Glaffes in order to fee di- cantorad of finctly? Before we refolve this Quertion, it is to be obferved, that a Cataract is not a Pearly Subitance formed between the Aqueous and Chryitalline Humours, as mazzt large has been long imagined, but is an Alteration made in the Chryitalline Humour it felf, which has thereby intirely loft its Tranfparency and is become opake, if not through the whole Subftance of it, yet at leaft in fome Part of it; which may very cafily be, for this Humour is compofed of a great many Membranes one upon another, which become vifible when it is boiled. Whence
fore they arrive at the Tab. X. Bottom of the Eye, let us fuppofe CDE to be the Pupil of a young deep Eye, the middle Part of which D is covered by the fmall Interfice between the Holes of the Paper; and let OQNPR be the Buttom of the Eye. Now becaufe this opake Body intercepts a great many of the Rays, and for that Reafon makes all the Pencils hollow, chat is, viithout any Rays in the Middle of them, it is evident that the Point A is feen in the Place marked 2 by the extreme Rays 4 R , and a few ochers near them, and in the Hlace marked 3 by the Rays HQ, HN, whereas, o^{-} therwife it would have been feen only confuftedly in Λ by the middle Rays P, and thofe which furround them. And becaufe the fame Thing happens in every ocher Point of the Arrow, it hows that it ought fo to appear double, that when the right Hole DE of the opake Body which covers the Pupil is ftopped, the left Image OQ, and the Arrow on the right Side difappear ; and if the left Hole be flopped, the right Image and let: Arrow difappear. But if on the other Hand, we fuppofe the Eye to be old and fiat, fo that the Bottom of it is not OQNPR, but very near GYH, and that the Rays of every Pencil arrive at the Buttom ot the Eye befure they are colleEied into a loint,
the Arrow will be feen double again, but fo that the Images of it upon ftopping the Holes by Turns, will dilappear in the contrary manner to what they did before. Further, by the fame Argument we may collect, that if there be a great many Holes inftead of Two, there ought to be a great many Images of the Object feen. Laftly, Why the Body which appears double in this manner, appears to be edged with Colours allo, may be feen in the Notes on Chap. xxvii. Art. 65 . towards the End.

Thirdly, Why, if there be two Candles A and \mathcal{B} fo placed, that through the Hole S, only the Candle A can be Seen with the right Eye F, and only the Candle B with the left Eye D; mben both the Eyes are oper together, is there oure Cindle only Seer, as if it were in H; but the Candles muft be both of the fame Heighth, and at the fame Time no opake Eodies muft be feen with which the true Places of the Candles A and B may be compared? The Reafon hereof, is, That becaufe one Candle only can be feen by each Eye; and one Eye only makes a very bad Judgement of the true Diftance of Objects; each of thefe Candles are therefore feen nearer than it really is, the one in the Line AF , and the other in the Line BD, and therefore they feem both to unite in the common Place H as if they were but one.
it follows, that when the Cataract is taken away, the whole'Chryttalline Humour is taken away, or at leaft, is made flatter or lefs convex than it was before: Now if this Humour be lefs convex than it was before, the Rays which the Eye receives from every Point of the Object will not be fo much refracted, or will not incline fo much to each other, as to be able to unite together when they come at the Retina; and this muft make the Vifion confufed. But this may be remedied by the Help of a very convex Glafs, which makes the Rays that were before diverging, become converging when they enter into the Eye.
8. Whymefee confuyfedly, soben we are ander Water.
8. Why do Divers, when they are under Water, fee all Things confufedly, unless they make ufe of very convex Glaffes? The Reafon is, becaure the Rays of Light which come to them from the Object, are very little refracted in paffing out of Water into the Aqueous Humour of the Eye, fo that thofe Rays which come from the fame Point, are not united together when they fall upon the Retina; and this is remedied by very convex Glaffes.
9. Why if we iook iutently woith one Eyc spon a fmall Object, we cannot Sec azother fmall Object which is very near it.
9. Laftly, Whence is it, that if we Jout one Eye, and look intently with the other, upon a fmall Object, which is at fix Foot Diftance, fuppofe, we cannot at the fame Time fee anzotber finall Object which is at a little more thans balf a Foot Diftance from it; though we can fee-it, if it be a little nearer, or a little further off? The Rearon is, becaufe when this other fmall Object is at the

Place where it cannot be feen, it impreffes the Image exactly on that Part of the Bottom of the Eye where the Optick Nerve enters in, and where the Separation of the Capillaments of this Nerve is made, in order to fpread themfelves every Way, and cover the Bottom of the Eye; fo that this Image has no Effeit, becaufe it does not fall upon the Extremities of the Capillaments of the Optick Nerve, which is neceffary in order to Sight, as has been before explained.
30. That it is fometimes vorth while to take the Pains to find aut the Truth.
10. There are innumerable other Queftions upon this Subject that might be asked; but they who rightly underftand the Nature of Vifion, will find it no great Difficulty to refolve themfelves, and the Pains which they take in finding out the Solution of them, will make them have a clearer Notion of them, and render them more familiar: And as to thofe who are unca-

Chap. 35. of Natural Philosophy:
pable of underfanding them, or who will not be at any Pains; it is to no purpofe to attempt to fatisfy them, by explaining a great Number of Queftions. Wherefore I thall here conclude this firt Part; which is fufficient to content all reafonable Perfons, and to open the Minds of fuch, that they may for the future proceed in a right Method of difcovering the Truth, and avoiding Error, which are the Two Things we ought principally to have in View in all humane Sciences. For the Exactnefs and Improvement of Reafon, together with fuch a Freedom and Openefs of Mind, as may render it capable of judging fincerely and impartially, and of clearing it felf of all Difficulties, are incomparably more to be valued than the Knowledge of all the Sciences in the World.

The End of the Firt Part.

B O O K S Written by the Reverend Dr. Sam Ue i

 Clarke; And Printed for James Knapton, at the Crown in St. Paul's-Church-yard.ADifcourfe concerning the Being and Attributes of God, the Obligations of Natural Religion, and the Truth and Certainty of the Chriftian Revelation: In Anfwer to Mr. Hobb's, Spinoza, the Author of the Oracles of Reajon, and other Deniers of Natural and Revealed Religion. Being fixteen Sermons Preached at the Cathedral-Church of St. Paul, in the Years 1704 and 1705, at the Lecture Founded by the Honourable Robert Boyle, Efq; The fifth Edition, Corrected. There are added in this Edition, feveral Letters to Dr. Clarke from a Gentleman in Gloucefter fhire, relating to the firt Volume; with the Doctor's Anfiwers. Price $6 s$.

A Paraphrafe on the four Evangelifts. Wherein, for the clearer Underftanding the Sacred Hiftory, the whole Text and Paraphrafe are Printed in feparate Columns over-againit each other. Together with critical Notes on the more difficult Paffages. Very ufeful for Families. In two Vols. The Fourth Edition, 8vo. pr. 12 s.

Three Practical Effays on Baptifm, Confirmation, and Repentance: Containing full Inftructions for a holy Life, with earneft Exhortations, efpecially to young Perfons, drawn from the Confideration of the Severity of the Difcipline of the Primitive-Church. The Fourth Edition. Pr. I s., and for the Encouragement of the Charitable, II 6 for $5 l$. bound.

A Letter to Mr. Dodzvell; wherein all the Arguments in his Epifolary Difcourfe againft the Immortality of the Soul, are particularly anfwered, and the Judgment of the Fathers concerning that Matter truly reprefented. Together with Four Letters in Anfwer to the Author of Remarks on the Letter to Mr. Dodwell. To which is added, fome Reflections on that Part of a Book called Amynstor, or the Defenfe of Milton's Life, which relates to the Writings of the Primitive Fathers, and the Canon of the New-Teftament. The Fifth Edition. pr. 4 s.

A Collection of Papers, which paffed between the late Learned Mr. Leibnitz, and Dr. Clarke, in the Years 1715 and 1716 ; relating to the Principles of Natural Philofophy and Religion. With an Appendix. To which are added, Letters to Dr. Clarke concerning Liberty and Neceffity; from a Gentleman of the Univerfity of Cambridge, with the Doctor's Anfwers to them. Alfo Remarks upon a Book, Entitul'd, A Philofophical Enq̧uiry concerning human Liberty.

Six Sermons on feveral Occafions.

BOOKS Printed for J. Knapton.

Jacobi Rohaulti Phyfica. Latine vertit, recenfuit, \& uberioribus jam Annotationibus ex illuftriffimi 1 faci Newzoni Philofophia maximam partem haultis, amplificavit \& qrnavit S. Clarke, S. T. P. Accedunt etiam in hac Quarta Editione, novæ aliquot Tabulæ æri incife; \& Annotationes multum funt auctæ, $8 v 0$. pret. 8 s.

1f. Newtoni Optice. Latinè reddidit S. Clarke, S. T. P.
C. Julii Cæffaris que extant, accuratifime cum Libris editis \&i MSS. optimis collata, evc. Accefferunt Annotationes S. Clarke. S. T. P.

The Scripture-DoEtrine of the Trinity. In three Parts: Wherein all the Texts in the New Teftament relating to that Doctrine, and the principal Paffages in the Liturgy of the Church of England, are collected, compared, and explained. The Second Edition. pr. 6 s.

A Letter to the Reverend Dr. Wells, Rector of Cotefbach in Leicefferfire. In Anfwer to his Remarks, orc. price is.

A Reply to the Objections of Robert Nelfon, Efq; and of an Anonymous Author, againft Dr. Clarke's Scripture-DoCrine of the Trinity ; being a Commentary upon Forty felect Texts of Scripture. To which is added, an Anfwer to the Remarks of the Author of fome Confiderations concerning the Trinity, and the Ways of managing that Controverify, in 8vo. pr. 4 s.

Books written by J. Clarke, D. D. Chaplain to bis Majefty.
An Enquiry into the Caufe and Origin of Evil: In which the Principal Phænomena of Nature are explained, according to the true Principles of Philofophy; more particularly in Anfwer to Mr. Bayle, and other Defenders of the Antient Manichean Scheme, of iwo independent Principles. Being the Subftance of Eight Sermons preached in the Year r7ig, at the Lecture founded by the Honourable Robert Biolle, Efq;

An Enquiry into the Caufe and Origin of Moral Evil. In which the prefent State and Condition of Mankind is confidered and explained, upon the true Principles of Morality and Revelation; and the Objections of the Antient and Modern Defenders of the Manichsan Scheme, particularly Mr. Bayle, fully anfwered. Being the Subitance of Eight Sermons preached in the Year 1720, at the Lecture founded by the Honourable Robert Boyle, Efq;

The Truth of the Chriftian Religion. In Six Books by Hugo Grotius. Corrected and iliuftrated with Notes, by Mr. le Clerc. To which is added, a Seventh Book, concerning this Queftion, What Chriffian Church we ought to join our Selves to? Tranflated by Dr. Fobnclarke. The Second Edition, with Additions.

DイOKS

BOOKS Printed for J. Knapton?

BOOKS Written by the Right Reverend Father in God, Benjamin Hoadly, D. D. Lord Bifhop of Hereford. J

THE Reafonablenefs of Conformity to the Church of England. To which is added, the brief Defenfe of Epifcopal Ordination. The Third Edition. price 6 s.

The Original and Inftitution of Civil Government, difcuffed. The Second Edition. price 5 s .

Eighteen Difcourfes concerning the Terms of Acceptance with God. The Second Edition. price 5 s.

Several Tracts formerly publifhed: Now collected into one Volume. To which are added Six Sermons never before publifhed, 8vo. price 6 s .

The Meafures of Submiffon to the Civil Magiftrate confildered. The Fifth Edition. price 3 s.

A Prefervative againft the Principles and Practices of the Nonjurors, erc. The Fifth Edition. pr. Is.

The Nature of the Kingdom or Church of Chrift: A Sermon preached before the King, March 3I. 1717. The Fifteenth Edition. pr. $4 d$.

An Anfwer to the Reverend Dr. Snape's Letter. pr. 6 d .
An Anfwer to the Reprefentation drawn up by the Committee of the Lower Houfe of Convocation, concerning feveral dangerous Pofitions and Doctrines contained in the Bihhop of Bangor's Prefervative and Sermon. 'The Second Edition. price 4 s.

An Anfwer to a Calumny caft upon the Bithop of Bangor, by the Reverend Dr. Sherlock, at the Conclufion of his Book entituled, A Vindication of the Corporation and Teft AEts, \&xc. pr. 3 d.

An Anfwer to a late Book written by the Reverend Dr. Sherlock, entituled, The Condition and Example of our Bleffed Saviour vindicated. pr. I s.

The common Rights of Subjects, defended: And the Nature of the Sacramental Teft, confidered. In Anfwer to the Dean of Chicheftcr's Vindication of the Corporation and Teft Acts. pr. 3 s. 6 d .

An Anfwer to the Reverend Dr. Hare's Sermon: with a Pofffcript occafioned by the Lord Bihhop of Oxford's late Charge to his Clergy.

Six Sermons on feveral Occafions.

[^64]

IIIA• $\mathcal{E V}$
TAB3. IX.

-
$*$
\odot

[^0]: I There is one Exception,) How the Idea of God proves his Exifence, See Cartcf. Princip. Part. I. Artic. 14. and Regis Metaphyf. Lib. I. Parto. 1. Cat. 5. But this is tou nice

[^1]: 1. Arifiot. de Anima. Lib. 2. cap. 5. Senfativn conffifs in being put into Motiozs, and is a fort of Paffion, as中as faid before; for there feerios to be

 Some Cbange or Alteration made in us, and again, chap. 11. Senfation is a fort of Paffion.

[^2]: 1 Swifter than it goes it Self.) Unle's it be endued with an claflick Firis, which is to be underfood

[^3]: 1. That the whole Extenfion of the Table, \&c) Yes, if neither the Table, nor the Matter it felf, or Subflance of the Table exifted. This Inftance therefore does not prove, that Extenfion is that Subftance or Matter of the Table, but that there mult necef-
[^4]: 1. Does not at all differ, \&cc.) This indeed is nor true ; but it makes no difference as to the Explication
 of the Phænomena of Nature. For the true Definition of Placc. See the Notes on Chisp. X. Art. 2 .
 2. Tbirdly,
[^5]: I. That fone very fibtile Matter, \&ic.) Wher any Body is rarefyed, it is ofeen very manifeft, that its Parts are diftended by the Entrance of the Air, or fome more fubtile Macter. But this does not follow
 from a Plcaum, but either from the Liquidnefs, or from an elaftick Force, or from Gravity and Prefiure, or from fome accidental Motion in that Cubtile Mater which enters into the Pores of the rarefyed Body.

[^6]: 1. That the tyo Bodies themeclues are cqual, \&c.) What is faid of Quantities decreafing infinitely little, may alfo be underftood of Quancities increafing infinitely great ; that is, Quantities infinitely great, are not therefore all equal to each other. For a Line drawn from a Point irfinitely, one way, is but half a Line drawn from a Point infinicly, two ways. And a Rectangle of an infinite Heighth, upon a finite Bate, may be $\frac{1}{2}, \frac{x}{3}$, \&c of a Rectangle of an infinite Height alfo, upon a proportionable Bafe. And, in Heterogeneous Quantities, an infinite Line, is not only not equal, but is infinitely lefs than an intirite Superficies, and an infinite Superticies, than an infinite folid Space. And in a folid Space, ${ }_{2}$ Cylinder infinite in Length, is not
[^7]: ther in Motion or at Reft, continue in the Srate in which they once are; is the mere Inertia of Matter; and therefore if it could be, that God Thould forbear willing at all; a Body that is once in Motion, would move on for ever, as well as a Body at Reft, continue ar Reft for ever. And the Effect of this Inertia of Matter is this, shat all Bodics refift in pro-

[^8]: 1. And this is the Foundation of Mechanicks) Upon this is built that famous Problem of Archi-

 given Weicht, with a gi. ven Force: For by increafing the Diftance C B, the Force of the Body B may be increafed infinitely. For the manner how this is done by increafing the Number of Leavers, Wheels. Pasllcys, Screms, \&c. fee Willkins's Mathematical Mazick, and others. The Force of every one of which Mechanick Poomers, and whence it ario
[^9]: 1. If the Syringe be not too thick) The Thicknefs of the Syringe fignifies nothing (nor the occult Paffages, nor the fubtle Matter, as was faid on the Article above:) but the Thicknefs of the Sucker; which the greater it
[^10]: Pores through which that fietitious Matter fhould pafs, is to no Purpofe. For if there were a Paflage for that fubtile Matter, either through the 2 Ruickf:luer or the Glafs; yet it would not be able to force the 2 zickflver up into the Tube, nor to futtain it there: And if there be no Paflage for it through either of them, the it would not fuffer the Quickfilver to fubfide again, as it does when the Glafs is thaken. But indeed the Particles of 2 nickjilver,

[^11]: 1. That this fine Matter) Not \mid no fuch Thing, but only the Ethat Matter, foi probably there is \mid latticity of the Air it felf.
[^12]: 1. Becarse the World is full) Whether the World be full or not, it is the fame Thing ; for it cannot be, but that the Air by its own Weight (and Spring) muft rufh into the empty Bellows when they are
[^13]: 1. Hinders it from impelling) If the entire Weight of the Liquor only be confidered; we muft fay, that the Difficulty of Sucking, - is therefore greater or lefs, becaufe, in proporrion to the greater or lefs Height or Thicknefs of the Column of Liquor, the Breaft is more or lefs diftended by the Power of the Mufcles; fo that the Refiftance of the internal Air (by which it endeavours to hinder the Liquor from rifing) muft be fo much more or lefo weakned by Rarefraction, according to the Power of the external Air, to raife up the heávy Liquor to the Mourth. But becaute the Columns of Liquor are rai-
 fed by the external Air with lefs or greater Difficulty, according as they are lefs or greaner in Height and not in Thickne/s; 'therefore it wefuppofe two. fuch Columns, one of which is twice as high as the other, and this other twice as thick as that ; though it be plain, that in both Cafe, there is the fame Quantity of Air to be fucked out of the Quill, and the fame Quantity of Liquor to be fucked threugh it; yet it is evident, that a greater Diftention of the Breaft, and a greater Force of the Mufles is required, that is, it is more dificult to fuck or raife up the Firft than ties Sccond.
[^14]: 1. Though very much agitated and dilated by the Flame, does homever prefs upon the Flefh as mutch as it did before, becaufe the Cupping-Glafs being not yet put quite clofe, does not take off any of the VVeight, mohich it had before it was dilated.)

 This Explication had been fomewhat more plain, if the Author faid----though dilated by the Flame, yet fince it is very much agitated, it does however. Nor was there any need of having, recout fe to the VVeight of the external Air here.

[^15]: 1. The one is on!y a Continwation of the other) But it is not fo. For BBdies which are either abfohutely bard, or fo foft, as to be void of Elaficity, will not rebound from each other, Inpenetrability only makes them foop. Newt. Optic. pag. 373. See above, Chap. x. Artic. I3.
 Furcher, there may be a Moment of Reft, in the Point of Reflexion; becaufe the refected Motion, is not
[^16]: 1. Ought to continue in Motion) See above, Chap. x. Art. Iz
[^17]: I. That the Body CDEF refifts the Determinaticn) If the incident Body A, and the Body CDEF upon which it frikes, are void of all Elafticity; the Body CDEF not only refits this perpendicular Determiuation, but entireiy deftroys all the Mocion that arifes from that Determination (See the Notes on Chap. x_{0} Art. 13.) fo that the Body Λ, is afterwards moved, with the other part of its Motion only, along the Superficies BLF. But if either, or both thefe Bodies be perfectly elaftick, then a new Motion will be imprefled upon the Body A, equal to the Motion which was loft, and with a contrary. Determination; fo that, when it comes to the Suparficies GL, with the Determination $A G$, it will then recede from it with the Determination LI.

[^18]: tracted into it felf ; which is, becaufe when we look upon any Thing in the Water, it feems to be nearer us than it really is; ffo that herein they falfely atcribed that to Refraction (of which there is none in the perpendicular) which was to be afcribed to the diverging of oblique Rays after Refraction, from the Point

[^19]: * It is worth while to explain, a little more fully, and in better Order, the Hydroftatick Propotitions, which are urged too briefly and confufedly in this Chapter.

 1. Therefore. All Water gravitates in every Place, even in Water it felf (and the fame is to be underftood of any orber Liquor) and by reafons of the cgual Freffurc of its Parts ort all Sides, its Superficies ought to be plain and lerel. This is demonftated in the fecond Article of this Chispter, and by the famous Mr. 'Boyle in his Hydroftaticks. Paradex 1.
 2. A bard Body, fuech as I, equab in Weeight to a gixantity Tub. III. of Water of the fame Fig. 4. Batks put zuto Water, outhe neither to firk sur rife, but to reft in ariy Plaic. For the Column EFGH gravitates neither more nor lefs than the Columns which furround it, and therefore it ought to keep in requilibrio. See arrt, 3 of this Chat.
 3. A Goajy, Such as I_{2} havier than fricuder, onght to firk in the VYa-
[^20]: 1. So great is the Force of freesing Water, that not only Bowls and Glafs Cups, but alfo large VefPels of Brafs and Silver are broken py it. See Experim. Acad.del Cim. p.72.
 2. A Dilatation Senfible crowsh) Yet it mult not be diffembled, that fomething may poffibly be here afcribed to the Contraction of the Glafs. See the Notes on Chap. 23 . Art. 36.
[^21]: -

[^22]: I. In continual Agitation) See the Notes upon Art. 9.
 2. VVill alfo be difipated) The illuftrious Newton thus expreffes himfelf upon this Subject in his Opticks, p. 362. If a very fmall 2 unatity of any Salt or Vitriol be diffolved in a great Quantity of VVater; the Particles of the Salt or Vitriol will not frok to- the Bottom, though they be heavier in Specie than the VVater, but woill evenly diffufe themfelves irsto all the VVater, fo as to make it as faline at the Top as at the Bottom. And does not this imply, that the Parts of the Salt or Vitriol recede from one another, and endeavour so expand themfelece, and get as far

[^23]: 1. The Motion of Particles) Not by (See above on Art. 150 their Motion, but by their Attraction.
[^24]: 1. Thofe curious Bodies) Concern ing which the admirable Perfon be fore cited, fays thus. VV ben any faline Liquor is evaporated to a Cuticle, and let cool, the Salt concreses into regular Figures; which argues, that the Particles of the Salt before they concreted, floated in the Liquor at equal Diftances in Rank and File, and by conSoquence, that they afted upon one another by fome Power, which at equal Diftances is cqual, at unequal Diftances, zuequal. For by fuch a Porocr they will range themfelves uniformly, and without it, they will float irregularly, and come togethor irregalar-为 Opticks, p. 363°.
[^25]: 1. Muff break the Glafs) But it may be (and it is more likely) that the Cold, by fopping the Motion of fome of the Earts on a fudden, whilft the reit are in great Motion, breaks Veflels made of Glafs. For fhus almofr all Bodies are broken by the unequal Murion of their Parts: Hence a tile by one Blow burfts afunder many simes into fix hundred
[^26]: 1. The VVorld is full) See the Notes on Chap. viii.
 2. And in this manner) A Portion of any Liquor, inclofed in another Liquor, which it does not mix with, will preferve its Figure, whatever it be, without any Alteration, if the Paris of the furrounding Liquor be at reft, with refpect to each nther. See Newt. Princip. Book II. Prob. 20. Cor. 9th. But if the Parts of the furrounding Liquor be agitated, the inclofed Drop muft neceffarily be comprefled into a globular Figure. For fince the Superficies of any other Figure is greater than that of a Globe, and therefore expofed to more Attacks from the Parts with which it does not mix coming upon it on all Sides; and becaufe whatever is preffed upon on all Sides, retires thither where it may be leaft preffed upon; it is e-
[^27]: 1. Becaufe the Air) Since all thefe Phænomena are the fame in a Vacy$u m$ as in the open Air; we muft affert, that the Superficies of any Liguor contained in any Veffel is

 Gibbuus or Concave; according as the Particles of the Liquor are more or lefs murually attraEted by each other, than they are by the Matter of which the Veffel is made.

[^28]: 1. Wrthich we cammot frotofe) See the Notes on Chap. xi, Art. Is.
[^29]: 1. The Air which mozes) See the Noter on 4 Art. 85 , of this Chap.
[^30]: 1. Becarfe in his II. Book) This Place is not in that Chaptet, but in the th Chap. of the fame Book, he

[^31]: 1. The Principle or Canfe of Heat) Is not the Heat it felfo
[^32]: 1. Flame is more agitated) Con- | Fire, See Part the IIId. and the eerning the Nature of Flame and I whole ix Chap. with the Notes.
[^33]: * It will Swell) Becaufe its Parts are made ftiff, by the Mixture of Nitrous Particies, and of other Salts. (See the Notes on Art; 54.) However it mutt be acknowledged, that fomething ought to be allowed for the Contration of the Glats. For as Heat, by encreafing the Motion of the Parts; dilates and extends Glafs and other Bodies, fo cold by ftopping

[^34]: 1. To make the Thermometer) This Inconvenience may be remedied by bending the Neck of the Thermometer into a Spiral; for by that means the Spirits of Wine will rife eafier
[^35]: and quicker, and the Difference of the Legrees of Hear may be more eafily obferved.
 2. Matter of the Firf\& Element) See the Notes below on Art. 48.

[^36]: 1. It is much more probable that Cold (which is not merely comparative, as that of fimply' Hard of Liquid Bodies is; but pro-
[^37]: \therefore T. That the Heat coryupts them) However for the moft part, the Particles of the Juice being dilated and made lliff by the Cold, break in pieces, and fpoil the tender Parts of the Buds, as is oblerved by Mr. Le

[^38]: r.The fmall Fibres) Concerning the Organ of Tafte, and its ${ }^{\text {D }}$ Defription. See Rouis's' plyf. 'Book VIII.

 Part II. Chap. iv. and the famous Lewenhoak's Epif.

[^39]: 1. The Bigness, Figure and Motion) Others contend, that not all the Particles, but the Salts mixed with the Particles of all Bodies, are.the Caufes of all Taftes; which is handled at large by Mr. Le Clerc in bis Pbys. Book V. Chap. xii. And indeed this is a very probable Opinion; bur
[^40]: 1. A Chapter particularly upon this
 nbject) Chap. viii. Brook, 2 . Con-
[^41]: 1. It only atis upon a Barly.) The Motion which is in the Air before it is moved by the soinnding Body, crentributes nothing at all towards producing Sound. For as many Parficles of Air as there are, tending the fame way as they are impelled by the
[^42]: 1. The Phyficians call the auditory Nerves) Concerning the Organ of
[^43]: 1. Ttirned into a Flame) See this Phrenomenon explained in the Notes
 on Part III. Chap.ix. Art. 13.
[^44]: 1. This Motion of the Air) For the Parts of the founding Fody going and coming by Turns, thruft and drive forward as they go thofe Parts of the Air which are next them, and by preffing upon them, condenfe them; then by returning, they permit the Parts thus compreffed, to fpread and dilate themfelves again. Thofe Parts of the Air therefore which are next to the founding Body, go and come by Turns agreeably to the tremulous Agitation of the Parts of the founding Body; and in the fame manner as the Parts of that Body agitate thefe Parts
[^45]: 1. Is So extraordinarily dilated) |on, See the Nutes on Part. III. For the urpe Reafon of this Dilatati-
[^46]: r. In a reciprocal Pyoportion) Here the Number of Vibrations in a given Time are compared with each ocher. But it the Times of the Vibrations be compared together (which is the better Way) then we muft fay, that the Vibrations are to each other, as the fyuare Roots of their Lengths direcily. As may be thus demonftrated. We fuppofe that the Acceleration of heavy Bodies in falling is fuch, that the Spaces they run through, are as the Squares of their Times (which fhall be demonftrared in its proper Place. Sce the Noics on Part lI. Chap. xxviii. Art. 16.) then if we imagine fimilar Arcs of unequal Circles to confift of an infinite Number of Sides of fimilar

[^47]: 1. But the other will founnd alfo) So likewife if two Glaffes, by putting in a proper Quantity of w^{r} ter, be made Unifons ; the preffing our Finger hard upon the Edge and moving it round either of them, will make the Water in the other curl, and dance abour.
 2. Is to be found in other Things) Thus Mr. Boyle relates concerning a
[^48]: 1. The $61 / \mathrm{I}$ of the Elcuenth Section) Where, after having propofed this Neftion. Why me camot fee through alk Opake 'Bod'y, He argues very'
 mach for the Propagation of I.igh: in ftrcight Lines. See the Notes on the latier Part of the 15 Art. of this Chapict.
[^49]: I. And in a Multitude of other Things) Thus likewile Amber, :ubbed very hard in the Dark; Ruickfilver fnaken in a Vacuum; and a Glafs out of which the Air is exhaufted, it it be tuined round very quick and

[^50]: 1. To affect our Senfes in a Moment) It appears now from the Phenomena of 'fropiter's Satellites, which get into the Shadow of 7 fipiter a little fooner than they ought to do, when the Earth approaches towarls Fupiter; and on the other hand, come out of the Shadow a little later than they ought to do, when the Earth departs from 7repiter (as many eminent Aftronomers have ob-
[^51]: Cerved) that Light (which is a real Body) is not propagated in a Moment of Time, but takes up about feven Miruces in coming from the Sun to the Earth, which is about 50000000 of Miles (See Nerdt. Opt. p. 252.) What furprifing things follow from Lights not being propagated in a Moment, but in a certann Space of Time. You may fee in the Noocs on Part II, Ch. xxy. Art. 3 .

[^52]: 1. Ought to propagate the Force) To propagate it indeed, but not in ftraight Lines; as Light is really
 propagared. See the Notes on Art. 15. above.
[^53]: 1. That they ought to be refracted) The Rays are refracted, not by falling upon the very Superficies of Bodies, but without immediate contact, by that very fame Power by which they are emitted or refletted, exerting it felf differently in different Circumitances, as may be demonfrated by the fame Arguments as were before made ufe of about Reflexion without ContaEt, and alfo by the following ones.
 2. Becianfe when Light goes out of Glafs into Air, as obliquicly as it can pofibly do, if its Incidence be made fiill more obligne, it becomes totally reficted. For the Power of the Glafs, after it has refracted the Light as obliguely as is poffible, if the Incidence be made fill more -blique, becores too firong to let any of its Rays go throught, and by confequence caufes total Refiexions.
 3. Becarse Light is alternately reffecied and transinitted by thin Plates of Glafs for many Surccef $\int_{1}-$ ons accordingly as the Thickness of the Plate increafes, in an arithmetical Prygrefion. For here the Thicinares of the Glads deternines,
[^54]: 3. ATriangular Primin) See the Notes on Art. 65 , below.
[^55]: 1. Somewhere near the Point G) For the Rays are not collected together exactly into the Tab. IV. fame Place, and the FoFig. 8. cus is not in a Point, but in a fmall Line, that is, in part of the Line KG, fo that fome of the Rays meet with each other n.earer the Point K than others of them. Thus for Inflance, if the Glars be equally gibbous on boch Sides that Line will be $\frac{5}{3}$ of the
[^56]: or Refractions in their Interftices, then they conflitute a iranfparent Body. But if their Interftices be fo large, and filled with fuch Matter, or fo empty (proportionably to the Denfity of the Yarts themfelves) that there are feveral Reflexions and Re fractions made within the body, then that Body is Opake. (See Art.5. above) Further, thofe opake Bodies which are made up of the thinnelt fmall Plates of all, are Black; and thofe that are made up of the thickeff fmall Plates, or of fuch as are of very different Thickneffes, and are therefore fitted to reflect all $\mathrm{Co}-$ lours; fuch as the Froth of-Water, thefe are VVhite; and thofe which

[^57]: 1. Appears Black) This is taken out of Arifotle's firft Book of Colours. Chap. i. There are three V Vays that Black appears to us. VVhere we cannot fee at all, it is suaturally Black. Or where there is no Light brought to our Eyes. Or where the reflected Light is very rare and fmall; and thus Shadows appear Black.
 2. Difunited and cafily Shaken) And they very eafily and ftrongly make other Bodies, to which they
[^58]: 1. Whaich we ca.ll coloured) See above on Art. 52.
[^59]: I. In the fame Point of that Part of the Rrain) This Conjecture is not yet confirmed, by cutting open the Brain. But be that as it will; the Capillaments $\mathrm{CH}, \mathrm{DI}, \mathrm{EK}$, Tab. VII. éc. may very properly Fig. 3.

[^60]: 1. They conf:f of one Glafs only) There are fome which confilt of feveral Glaffies, that are much more nice. What and how furprizing

 Things have been found out by the Help of thefe Microfropes, may be feen in Mr. Hook's Micrography, and in others.

[^61]: 1. For it is eafy to demonfirate, ixc.) For the Angle DFI $=$ to the Angle CFB : and the AnTab. VII. gle $\mathrm{CFB}=$ to the $\mathrm{An}-$ Fig. 3. gle IFL, therefore the Angle 1FL; and the Angles at I
 are right, and the Side IF common. Therefore the Triangles DFI and IFL are fimilar and equal. In like manner the Triangles DGI and IGL are fimilar and equal : Therefore the "'riangles DGF and FGL. are fimilar and equal, Q.E.D.
[^62]: I. Sepayated by Refraction) They ste feparated, not by Refraction, but
 merely by receding from the Point where they crofs each other.

[^63]: 1. Two fmall convex Looking(Glafes) The Rays in this Cafe, are not reflected by the inward Superticies of the Eye-lids themFelves, in the manner of Looking-Glafies, but
[^64]: The Works of William Chillingworth, M. A. of the Univerfity of Oxford. Containing his Book, Entituled, The Religion of Protefiants a Safc Way to Sulvation: Together with his Nine Sermons preached before the King, or upon eminent Occafions. - His Letter to Mr. Lewigar, \&xc. The Seventh Edition, compared with all the Editions now extant, and made more correct than any of the former. In this Edition are added, Two Letters written by the Author W. Chillingmorth, M. A. never before printed.

